
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

DEPARTAMENTO DE INFORMÁTICA

REINFORCEMENT LEARNING ON CONTROL

SYSTEMS WITH UNOBSERVED STATES.

THESIS

A thesis submitted in partial fulfilment of the requirements for the degree of

DOCTOR EN INGENIERÍA INFORMÁTICA

by

MIGUEL ANDRÉS SOLÍS CID

In Valparáıso, Chile

June, 2017.

DISSERTATION TITLE:

REINFORCEMENT LEARNING ON CONTROL SYSTEMS WITH
UNOBSERVED STATES

AUTHOR:

Miguel Andrés Soĺıs Cid.

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor en

Ingenieŕıa Informática in Universidad Técnica Federico Santa Maŕıa.

Dr. Héctor Allende

Dr. Manuel Olivares

Dr. Ricardo Ñanculef

Dr. Daniel Sbarbaro

Dr. Álvaro Pardo

Dr. Hernán Astudillo

Valparáıso, June 2017.

The thesis contains no material which has been accepted for the award of any other degree

or diploma in any university or other tertiary institution and, to the best of my knowledge

and belief, contains no material previously published or written by another person, except

where due reference has been made in the text. I give consent to this copy of my thesis,

when deposited in the University Library, being made available for loan and photocopying

subject to the provisions of this entity.

RESUMEN
En el problema de hacer que un sistema de control siga una trayectoria dada, el principal

objetivo es encontrar una señal de control apropiada (o acciones que el controlador debeŕıa

ser capaz de ejecutar) para hacer que la variable a controlar del sistema siga los cambios

realizados por el valor de referencia que se desea imitar. Existen dos opciones para abordar

el problema: pudiendo ser tomado desde un enfoque basado en modelos paramétricos y un

segundo enfoque adaptivo sin considerar la descripción detallada de la dinámica del sistema,

donde la primera opción enunciada corresponde al enfoque clásico de la teoŕıa de control, el

cual contiene la natural desventaja que requiere de un conocimiento acabado del sistema,

lo que es dif́ıcil de satisfacer debido a no-linealidades que deben ser aproximadas.

En el enfoque basado en modelos, se hace uso de un lazo de control realimentado por

el estado del sistema a controlar. Dado que se desea mantener la complejidad estructural

del controlador lo más baja posible, debido a que a mayor complejidad se requiere de un

mayor esfuerzo por parte del diseñador o de la unidad de cómputo, es que habitualmente

se utiliza una realimentación de estado de un grado de libertad. Sin embargo, el aumento

de complejidad al añadir más grados de libertad al sistema de control no representa un

problema cuando se considera la utilización de técnicas de aprendizaje automático para la

sintonización de los parámetros correspondientes.

En esta tesis se propone el uso de una estructura alternativa para un controlador con

realimentación de estado, agregando un grado de libertad adicional, lo que implica la in-

corporación de nuevos parámetros a considerar en la tarea de diseño, el que es abordado

desde un enfoque de aprendizaje reforzado para aśı sintonizar los parámetros de manera

automática. Los resultados obtenidos consideran la implementación de la propuesta en

un entorno simulado y en el prototipo f́ısico de un sistema subactuado. En dicho estudio

se considera el péndulo rotatorio de Furuta, con resultados que muestran ventajas en la

minimización de la función de costo en términos de la amplitud de la señal de control, obte-

niendo un desempeño mejor o igual en cuanto a la minimización del error de seguimiento

de la trayectoria de referencia.

Palabras Clave:

aprendizaje reforzado, control adaptivo, iteración de poĺıtica, péndulo de furuta, reali-

mentación de estado

ii

ABSTRACT

In the problem of making a control system that follows a given trajectory, the main objective

is to find an appropriate control signal (or actions that the controller should be able to

carry out) to ensure that the system variable for control follows the changes carried out

by the reference value that one wishes to imitate. There are two options to tackle the

problem: adopting an approach based on parametric models; or an adaptive approach

without considering the detailed description of the system dynamics, where the former

corresponds to the classic approach to control theory, which has the natural disadvantage of

requiring a full knowledge of the system, which is difficult to fulfil due to nonlinear systems

that must be approximated.

In the approach based on models, use is made of a control loop fed back by the state of the

system to be controlled. Given the desire to maintain the controller’s structural complexity

as low as possible, since higher complexity requires more effort from the designer or the

computing unit, usually a state feedback of a degree of freedom is used. However, the

increase in complexity in adding more degrees of freedom to the control system does not

represent a problem when one considers the use of automatic learning techniques for the

tuning of the corresponding parameters.

In this thesis, the use of an alternative structure for a controller with state feedback is

proposed, adding an additional degree of freedom, which implies the incorporation of new

parameters to be considered in the task design, which is tackled from a reinforcement learn-

ing approach, in order to tune the parameters automatically. The results obtained consider

the implementation of the proposal in a simulated environment and in the physical proto-

type of an underactuated system. The study considers the rotational (Furuta) pendulum,

with results that reveal advantages with the minimisation of cost function in terms of the

range of the control signal, obtaining a better or equal performance with regard to tracking

error minimization when following the reference trajectory.

Keywords:

adaptive control, Furuta pendulum, policy iteration, reinforcement learning, state feedback

iii

SYMBOLS AND ACRONYMS

The following is a list of symbols and acronyms commonly used throughout this thesis.

Further details in some definitions will be given on its appropiate moment.
ARE Algebraic Riccati Equation

BIBO Bounded-Input Bounded-Output

i.i.d. identically distributed and independent

LQR Linear Quadratic Regulation

LQT Linear Quadratic Tracking

MDP Markovian Decision Process

MIMO Multi-Input Multi-Output

MMSE Minimum Mean Square Error

MSS Mean Square Stable

PDF Probability Density Function

PI Policy Iteration

POMDP Partially Observable Markovian Decision Process

RL Reinforcement Learning

TD Temporal Difference

VI Value Iteration

WSS Wide-Sense Stationary

iv

Symbols and Acronyms v

eig(A) Eigenvalues of matrix A

det(A) Determinant of matrix A

tr{A} Trace of matrix A

A−1 (Multiplicative) Inverse of A

Aᵀ Transpose of matrix A

EF [x] Expectation of stochastic variable x from a probability distribu-

tion F

N+
0 Set of (positive) natural numbers, including zero

Prob{·} Probability of ·

CONTENTS

RESUMEN ii

ABSTRACT iii

SYMBOLS AND ACRONYMS iv

1 INTRODUCTION 1

1.1 Overview of Thesis Contents and Contributions 3

2 NOTATION AND PRELIMINARIES 6

2.1 Introduction 6

2.2 State space models 6

2.3 Reinforcement Learning with Gaussian Processes 16

2.3.1 Uncertainty and Learning 16

2.3.2 Reinforcement Learning 17

2.3.3 Algorithms 19

2.4 Summary 23

3 STATE-FEEDBACK CONTROL 24

3.1 Introduction 24

3.2 Modelling the controller 24

3.3 Stability analysis 27

3.4 Simulation results 30

3.5 Summary 34

4 ADAPTIVE CONTROL USING REINFORCEMENT LEARNING 35

4.1 Introduction 35

4.2 Controller Synthesis using Reinforcement Learning 36

4.2.1 Problem Formulation 38

4.2.2 PI for solving the stochastic LQT with known dynamics 39

4.2.3 Stochastic LQT with unknown parameters 42

4.3 Simulation results 44

4.4 Summary 45

vii

Symbols and Acronyms viii

5 EXPERIMENTAL RESULTS ON THE FURUTA PENDULUM 46

5.1 Introduction 46

5.2 Rotary inverted pendulum 47

5.2.1 Model formulation 48

5.2.2 Experimental setup 51

5.2.3 Model validation 52

5.3 Swing-up controller 53

5.4 Linear quadratic regulator 55

5.5 Switched control strategy 56

5.6 Dynamic state-feedback controller 57

5.7 Adaptive approach 59

5.8 Summary 60

6 CONCLUSIONS 61

A APPENDIX 62

A.1 Useful matrix properties 62

A.2 State space discretization 63

A.3 Hardware setup 64

A.4 Adaptive LQR code used on Furuta pendulum simulation 67

REFERENCES 69

Chapter 1

INTRODUCTION

When tackling the problem of making a system follow a given trajectory, the main objective

is to find the appropiate control signals (or actions that should be generated) for making a

variable of the system to be controlled to keep track of the desired reference value. To this

end, and according to Figure 1.1, a plant is defined as the process being observed (or not)

in order to change its output through an appropiate signal sent from the controller.

Tipically, there are two architectures or control loops, shown in Figure 1.1

• Open-loop control: the controller is not able to measure the current output of the

plant, so it is not possible to correct this signal and change its behavior as desired.

Also, there is no feedback, so it is not possible to stabilize this plant. Moreover, the

model on which the design of the controller has been based must be a very good

representation of the plant, since disturbances are negligible.

• Closed-loop control: the controller measures the output of the plant, and use it for

influencing the control signal. In this architecture, several approaches can be found,

as state feedback or output feedback which could be specially useful when there are

states not availables.

Then, according to the notation introduced in Figure 1.1, a control signal u[k] must be

generated and used as input of the controlled system, which has an output y(k) that should

(a) Open loop scheme

(b) Closed loop architecture

Figure 1.1: Open and closed loop comparison

1

2

keep track of the reference r[k], which is minimizing control error e[k] at time k. Therefore,

a model is needed.

One of the typical options is to assume a given structure for the model, and then tune

its parameters until the model and real system dynamics match. Another option, could be

to use physical laws for building a model and set relations between all the variables of the

system.

Both areas tackled in this thesis, Reinforcement Learning and classical Control Theory

assume there is a system description based on states, control variables (actions) and a model

which describes the state transitions. Nevertheless, the main disadvantage of optimal control

theory approaches, is that there is a perfect model assumption which is naturally hard to

satisfy due to non-linearities that have to be approximated.

Reinforcement Learning (RL) implies a cause and effect relationship between actions and

reinforcement signals given as reward or punishment. It involves a goal directed behavior

at least while the agent has an understanding of reward versus lack of reward or punish-

ment. The RL algorithms are built on the idea that successful control decisions should be

remembered, by means of a reinforcement signal, such that they become more likely to be

used at subsequent times. Although the idea comes from experimental animal learning,

RL is strongly connected from a theoretical point of view with direct and indirect adaptive

optimal control methods. On the other hand, Feedback Control Theory could be defined as

the study of alternatives of developing control systems with guaranteed performance and/or

safety. Applications could be found in aircrafts, industrial processes, robotics and many

more. It is often of interest to mimic nature and design control systems that are optimal in

some sense of effectively achieving required performance without using excessive amounts

of resources.

The first RL applications on control systems have been found in [44,45], where the reg-

ulation problem was tackled, whose objective is to design a controller for a given process,

such that the internal state of this process approaches zero as time increases. Then, an im-

mediate extension was to apply policy iteration (PI) algorithms to solve the linear quadratic

regulator (LQR) problem [11].

The LQR, i.e., the regulator problem when the system is assumed to be linear, and the

performance index is given in terms of a quadratic function [2], is particularly appealing

given that its solution is obtained by solving an algebraic Riccati equation (ARE). Then, PI

algorithms basically start with an admissible control policy and then iterate between policy

evaluation and policy improvement steps until variations on the policy or the specified value

function are negligible, as seen in [11,26,41].

On the other hand, the linear quadratic tracking (LQT) problem also assumes a linear

model for the process dynamics and a quadratic function for the performance index, but

the main objective is to design a controller such that the measured output of the process

to be controlled, follows an exogenous reference signal, so the LQR could be considered

as a particular case of the LQT problem. Although, as mentioned before, RL algorithms

have been extensively applied for solving the LQR problem, the LQT has not received much

attention in the literature mainly because for most reference signals the infinite horizon cost

becomes unbounded [7]. Work in [30] tackles the problem in the continuous time domain by

solving an augmented ARE obtained from the original system dynamics and the reference

1.1. OVERVIEW OF THESIS CONTENTS AND CONTRIBUTIONS 3

trajectory dynamics, while [22] takes a similar approach for the discrete-time case, where a

Q-learning algorithm is obtained for solving the LQT problem without any model knowledge.

Then, when considering noisy systems, the performance index and notions of stability

have to be modified accordingly. This problem has been extensively treated in literature from

the classical control, or model-based approach [13,18,47], unlike on the learning paradigm.

Work in [24] used neural networks for reducing calculus efforts on providing optimal control

for the stochastic LQR, while other works focus on relaxing assumptions in the ARE under

different scenarios, but still requiring knowledge of the system dynamics [12,49].

Work in [22] could be considered as the closest to our approach, given the LQT setup

and the absence of model knowledge. Nevertheless, unlike the work therein, we consider

the stochastic LQT problem, and we extend the structure of the (linear) state feedback

controller to be of a more general form. Then, when analyzing experimental results, RL

will prove to be specially useful for the case when the model is unknown, but it is still

useful when dynamics are assumed to be given, since hand-tuning of controller parameters

could represent a time consuming task due to their number of degrees of freedom and their

constraints.

This thesis tackles the trajectory tracking problem in control systems assuming there

exists some (sub)-optimal policy in terms of the corresponding (state) value function, by

using statistically guided exploration reinforcement learning techniques including a priori

knowledge, in terms of partial model or structural knowledge, whose convergence solves the

reference trajectory tracking problem for a given class of non-linear and unstable systems

through state-feedback controllers with partial information and indirect measurements.

This thesis aims to study the characteristics of a control system that would allow the de-

sign of a stabilizing controller, through reinforcement learning techniques, without requiring

full knowledge of the process dynamics.

In particular, the problems to be tackled would be arise from

• Obtaining conditions which allows modeling the reference tracking problem in control

theory, for an unstable plant (with unobserved states) through a MDP.

• Analyzing which forms of adding a-priori knowledge would be better for a given prob-

lem. This knowledge could be expressed in terms of the structure of the controller, or

partial knowledge about model parameters.

• To design a method to find a policy for a reinforcement learning problem modelled by

a MDP of a system with unknown dynamics.

• The analysis is obtained in real system applications, like the Furuta Pendulum, an

underactuated system whose control signal performs movements on the horizontal

plane for stabilizing an inverted pendulum on the vertical plane.

1.1 Overview of Thesis Contents and Contributions

This thesis is organized in 6 chapters (including the present one) and one appendix. The

most important contribution of this thesis is included in Chapter 4, which corresponds to

solving the Linear Quadratic Tracking problem, namely, the control problem where the

1.1. OVERVIEW OF THESIS CONTENTS AND CONTRIBUTIONS 4

output has to keep track of the trajectory of some exogenous reference signal assuming a

linear model and a quadratic cost function. To this end, a (linear) dynamic state feedback

controller is used, whose parameters are chosen by means of applying reinforcement learning

techniques, proving to be specially useful when the model of the plant to be controlled is

unknown or inaccurate, but still useful when dynamics are assumed to be given, since hand-

tuning of controller parameters could represent a time consuming task due to its number of

degrees of freedom and constraints.

In particular, content and contributions of each chapter can be summarized as follows 1

• Chapter 2: This is a review chapter where the notation and conventions used through-

out the thesis are presented. This chapter also shows known results regarding the

stability of stochastic control systems.

• Chapter 3: This chapter deals with design and stability analysis of state-feedback

controllers. We will focus on linear controllers for keeping complexity of control signals

to be computed as low as possible. Related to the plant, first the fully-observable case

is analyzed, that is the design of the controller assuming that the state is available

and there are no missing elements. Then, the partially-observable case is introduced,

along with state estimation based on Kalman Filter.

• Chapter 4: This chapter makes use of the fully-observable state-feedback control shown

in Chapter 3, formulating this control problem as an MDP and then deriving a new

approach for adaptive control using reinforcement learning, which is often interesting

due to its practical applications, since it does not require complete knowledge of system

dynamics.

• Chapter 5: This chapter shows the implementation results on the Furuta pendulum,

under a simulated environment and also on the physical prototype, including an ap-

propiate discussion.

• Chapter 6: This chapter wraps up and summarizes the thesis. Directions for future

research are also discussed.

• Appendix A: This appendix includes a review of some useful matrix properties to be

used throughout this thesis.

This thesis has made a direct and indirect contribution to the reinforcement learning

area, in terms of tackling problems from this thesis or contributing to RL applications

knowledge respectively. For instance, [36] propose the formulation and implementation of a

state-feedback control architecture which is not frequently used, mainly due to the additional

parameters introduced that make the hand-tuning task of obtaining an stabilizable controller

more complex, but this limitation can be lifted if parameters are initially chosen and updated

such that a performance index is optimized in terms of a reinforcement learning problem.

Another work directly related to this thesis, currently under review, corresponds to

A switched control strategy for swing-up and state regulation for the rotary

1Chapter 2 and Appendix present known results and, accordingly, no contributions.

1.1. OVERVIEW OF THESIS CONTENTS AND CONTRIBUTIONS 5

inverted pendulum, which presents the experimental results obtained on the stabilization

problem of the physical rotary inverted pendulum, a subactuated system with acquired

signals limited to position (angle) measurements from the two degrees of freedom, estimating

velocities from a soft-sensor and using this information for generating an appropiate control

signal in a state-feedback loop.

Concerning contributions to the reinforcement learning area of applications, the work

entitled [1] refers to one of the initial experiments conducted by the author in this area,

extending the application’s spectrum of reinforcement learning algorithms to the learning

task of a goalkeeper in a certain league (small-size league) of the Robot Soccer World Cup,

since the student had participated in the development and organization of the corresponding

team at this institution, and other leagues had already proposed this approach, noting of

course, there are several applications of this learning approach to the wider area of robotics

itself.

Then, the last application’s work corresponds to a book chapter [33], presenting a robotic

hexapod plattform development, and presents early results about this robot walking pattern

learning. The curse of dimensionality problem that faces this particular reinforcement learn-

ing problem, given the high number of degrees of freedom of this robotic crab, is tackled

with an artificial neural network as function approximator, whose evolution is not limited

to update the network weights but it is also concerned with evolving topology of this neural

network.

Chapter 2

NOTATION AND

PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to present definitions and basic results that are used repeatedly

throughout this thesis. Minors definitions and known results whose use is restricted to

isolated sections, will be presented in the Appendix at the end of this thesis, and referred

to when appropiate.

2.2 State space models

When designing a control system, that is, deciding the best structure and/or tuning param-

eters for making the system to be controlled (from now on referred to as plant) to behave

as desired, it is often required to have a model. This model describes a phenomenological

interaction between all the relevant variables that affects the signals of interest.

When the model corresponds to a continuous-time approximation for these physical

interactions, it describes a set of differential equations, while in the case of discrete-time

models we have difference equations. A linear version of a high order difference equation

model would be of the form

y[k + n] + an−1y[k + n− 1] + ...+ a0y[k] = bmu[k +m] + ...+ b0u[k], (2.2.1)

where ai and bj correspond to real-valued coefficients for relating the measured output y

excited by the input u, or real-valued coefficient vectors in the multi-input multi-output

case, with i ∈ [0, n− 1], j ∈ [0,m] and i, j, k ∈ N+
0 .

This linear difference equation can also be described by introducing a number of internal

variables x1, x2, ..., xnx that can be written as vector notation given by the internal state

vector x[k] at time k:

x[k] =
[
x1[k], ..., xnx [k]

]ᵀ
, (2.2.2)

so difference equation can be written in terms of this internal state vector that evolves as

x[k + 1] = f (x[k], u[k]) , (2.2.3)

6

2.2. STATE SPACE MODELS 7

where f(x, u), f : Rnx × Rnu → Rnx , is a state transition function such that:

f(x, u) =
[
f1(x, u), ..., fnx(x, u)

]ᵀ
. (2.2.4)

The state is exactly the information that has to be stored and updated in order to be able

to calculate the output, by using a given function h(x, u), h : Rnx × Rnu → Rny , so the

following model is obtained:

x[k + 1] = f (x[k], u[k]) , (2.2.5a)

y[k] = h (x[k], u[k]) . (2.2.5b)

Noting that as nx is used for the number of internal states of the system, nu and ny denote

the number of inputs and outputs respectively. Then, a state-space model is said to be

linear if f(x, u) and h(x, u) are linear functions of x and u:

f(x, u) = Ax+Bu, (2.2.6a)

h(x, u) = Cx+Du, (2.2.6b)

which directly leads to

x[k + 1] = Ax[k] +Bu[k], (2.2.7a)

y[k] = Cx[k] +Du[k], (2.2.7b)

with x[k],y[k] and u[k] corresponding to the internal state, measured output and control

signal respectively at time k, and A,B,C and D are (usually known and constants for the

time invariant case) matrices of dimensions A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and

D ∈ Rny×nu , where nx, ny, nu correspond to the number of internal states, number of

outputs and inputs respectively.

In addition, it is often interesting to analyze the stability of the system to be controlled,

that is analyze boundness of the signal to be controlled under different circumstances, since

depending on the criteria used for controlling a given process it could be possible that the

measured output follows the desired behavior in the long-term, but causing the output of

the system to diverge at several times before achieving this, which in practical applications

could even mean that the physical plant crashes before achieving the desired behavior.

Although in the case of linear models, eigenvalues of matrix A or eigenvalues of an

expression involving this matrix A and parameters of the controller are often studied, the

next chapter will introduce some suitable definitions of stability for the problem of interest,

introducing stochasticity in the model (2.2.7) by adding noise in the process.

Discrete-time systems under study in this thesis, assume a phenomenological relation

between their variables described by a model given by difference equations. A linear version

of a high order difference equation model would be of the form

y[k + n] + an−1y[k + n− 1] + ...+ a0y[k] = bmu[k +m] + ...+ b0u[k], (2.2.8)

where ai and bj correspond to real-valued coefficients for relating the measured output y

excited by the input u, or real-valued coefficients vectors in the multi-input multi-output

case, with i ∈ [0, n− 1], j ∈ [0,m] and i, j, k ∈ N+
0 .

2.2. STATE SPACE MODELS 8

In order to obtain a transfer function, that is a a relation between the input and output of

a linear time-invariant system with zero initial conditions at a given fixed point equilibrium,

it is convenient to define the forward shift operator, q, defined by

q(·) : RZ → RZ,

q (f [k]) , f [k + 1], (2.2.9a)

for a given differentiable and bounded function f . Then, the model (2.2.8) in terms of this

operator would be given by

qny[k] + an−1q
n−1y[k] + ...+ a0y[k] = bmq

mu[k] + ...+ b0u[k]. (2.2.10)

Then, it is appropiate to introduce the Zeta-transform for obtaining the frequency re-

sponse of the system with a Kronecker impulse as input at time k, with zero initial conditions

(null derivatives of y[k] and u[k] for all k), i.e.,

H(z) = Z{y[k]}|u[k]=δ[k], (2.2.11)

which is useful for studying features of the control system such as stability, and designing

a controller also described by a transfer function. For Multi-Input Multi-Output (MIMO)

systems, the same feedback control structure remains, but instead transfer matrices are

obtained.

Given a discrete-time function f [k], there is a bilateral and unilateral Z-transform re-

spectively given by Zb and Zu:

Zb{f [k]} = F [z] =

∞∑
k=−∞

f [k]z−k, (2.2.12a)

Zu{f [k]} = F [z] =

∞∑
k=0

f [k]z−k. (2.2.12b)

Note that throughout this thesis, Z-transform will be used as short-hand for Zu, that is

the unilateral Z-transform, and it is also possible to get back to time domain by using the

inverse transform, given by:

Z−1{F [z]} = f [k] =
1

2πj

∮
Γ

F [z]zk−1dz, (2.2.13)

where the contour limit Γ of the closed path integral is chosen inside the region of convergence

|z| > ρ, so the Z-transform and its inverse are well-defined (they exist) if there is some ρ > 0

and a positive constant k <∞ such that

|f [k]| ≤ kρk; k ≥ 0, (2.2.14)

i.e., it suffices that f [k] belongs to an exponential order in discrete-time.

Note that z in (2.2.12) is, in general, a complex number:

z = Aejφ,

2.2. STATE SPACE MODELS 9

= A (cosφ+ jsinφ) , (2.2.15)

where A is the magnitude of z, j is the imaginary unit, and φ is the complex argument in

radians.

Then, making an algebraic arrangement and applying Z-transform to (2.2.10):

Y (z)
(
zn + an−1z

n−1 + ...+ a0

)
= U(z) (bmz

m + ...+ b0) , (2.2.16)

so defining polynomials:

A(z) = zn + an−1z
n−1 + ...+ a1z + a0, (2.2.17a)

B(z) = bmz
m + ...+ b1z + b0, (2.2.17b)

(2.2.17c)

which replacing into (2.2.16) and solving for Y (z)/U(z) lead to the transfer function H(z):

H(z) =
Y (z)

U(z)
,

=
bmz

m + ...+ b1z + b0
zn + an−1zn−1 + ...+ a1z + a0

.

If a dummy variable, E(z), is defined in order to split (2.2.16) into two parts:

E(z) =
1

zn + an−1zn−1 + ...+ a1z + a0
U(z), (2.2.18a)

Y (z) =
bmz

m + ...+ b1z + b0
E(z)

, (2.2.18b)

expression in (2.2.18a) may be solved for U(z) in terms of

U(z) =
(
zn + an−1z

n−1 + ...+ a1z + a0

)
X(z), (2.2.19)

and rearranged to generate a feedback structure that can be used as the basis for a block

composition as:

E(z) =
1

a0
U(z)−

(
a1

a0

1

z
+ ...+

an−1

a0

1

zn−1
+
an
a0

1

zn

)
E(z). (2.2.20)

Then it is clear to observe that the dummy variable E(z) is specified in terms of the

system input u[k] and a weighted sum of successive terms of itself. A set of state equations

may be found from these expressions, assigning the state variables xi[k] (for i = 1, 2, ..., n)

to the outputs of the n previous equations, which by inspection takes the form:

x1[k + 1] = x2[k], (2.2.21a)

x2[k + 1] = x3[k], (2.2.21b)

... =
...

xn−1[k + 1] = xn[k], (2.2.21c)

2.2. STATE SPACE MODELS 10

xn[k] = −an
a0
x1[k]− an−1

a0
x2[k]− ...− a1

a0
xn[k] +

1

a0
u[k]. (2.2.21d)

Expressions in (2.2.21) written in matricial notation, lead to an alternative derivation

of the state space model described in Section 1.1, which allows a deeper analysis of the

system features, given that transfer functions are often limited by their controlable and

observable components. Also, given the initial value of the state of the plant and the value

of signals that act as inputs, it is possible to predict the output values as a combination of

the previously mentioned signals.

For discrete-time models, recall (2.2.7) and its matrices of dimensions A ∈ Rnx×nx ,

B ∈ Rnx×nu , C ∈ Rny×nx , where nx, ny, nu correspond to the number of internal states,

number of outputs and inputs respectively. Then, if we incorporate noisy measurement and

process disturbances, the state space representation is given by

x[k + 1] = Ax[k] +Bu[k] + v[k], (2.2.22a)

y[k] = Cx[k] + w[k], (2.2.22b)

where x[k], u[k] and y[k] correspond to the internal state of the plant, control signal and mea-

sured output of the plant respectively at time k, just like in (2.2.22), but on the other hand,

now we introduced uncorrelated (gaussian, and white, concept developed in the subsequent

paragraphs) noises v[k] and w[k], namely process and measurement noise with zero-mean

and constant variance Pv and Pw respectively. Introducing these kinds of noise is necessary

for dealing with uncertainty and disturbances unlike the model introduced in (2.2.7).

Remark 2.1. In practice, control signals on physical systems often do not cause an instan-

taneous effect on their outputs, which means that the numerator of the transfer function will

have higher order than the denominator, and in the state space representation this implies

D = 0 in (2.2.22), which is the case for the model to consider in the remainder of this thesis,

as shown in (2.2.22). �

In this thesis, we use the simplest notion of random process, that is, we understand the

random process x[k] with k ∈ N+
0 as a sequence of (possibly vector valued) real random

variables that have well defined (joint) PDFs (see [5]).

The following definitions are standard, and can be found in the previously referenced

work.

Definition 2.1 (Notation on stochastic processes).

Consider two discrete and complex-valued random processes x[k] and y[k], and let h be a

function defined in the real numbers. Then,

1. The mean of h(x), for x discrete, denoted by µx[k], is defined by

µx[k] , EF {x[k]}, (2.2.23)

=
∑
k

h(k) · F (k).

where EF {·} denotes the expectation operator over the probability mass function F .

2.2. STATE SPACE MODELS 11

2. The cross-variance function between x and y, denoted by Rxy[k + τ, k], is defined by

Rxy[k + τ, k] , EF {(x[k + τ]− µx[k + τ]) (y[k]− µy[k])
ᵀ}, (2.2.24)

for all k and τ such that x[k + τ] and y[k] are defined, that is k + τ ≥ 0.

Moreover, if x[k] = y[k], for all k, then the covariance function of x is given by

Rx[k + τ, k] , Rxx[k + τ, k]. (2.2.25)

3. The variance matrix of x[k], denoted by Px[k], is defined by

Px[k] , Rx[k, k], (2.2.26)

while the variance σ2
x[k] of x is defined by

σ2
x[k] , tr{Px[k]}, (2.2.27)

with tr{·} being the trace of ·.

4. The second order moments matrix of x[k], denoted by Mx[k] is defined by

Mx[k] , EF {x[k]x[k]ᵀ} (2.2.28)

�

Also, in this thesis we will encounter the following special random processes.

Definition 2.2 (Some special random processes).

1. x is said to be white, if and only if it is a sequence of uncorrelated random variables

with the same mean and variance matrix.

2. x is an i.i.d. sequence if and only if it is a sequence of identically distributed and

independent random variables.

3. A stochastic process is said to be ergodic if its statistical properties can be deduced

from a single, sufficiently long, random sample of the process, representing the average

statistical characteristics of the entire process.

4. The gaussian white noise is a stationary and ergodic random process with zero mean

from an i.i.d. sequence, that is defined by its fundamental property: any two values

from the sequence are statistically independent without considering how close they are

in time.

5. x is an uncorrelated process, without specifying with respect to what, if and only if x

is uncorrelated with any other random variable or process.

6. x is a second order process if and only if its mean and second order moments matrix

exist and are finite for every k ∈ N+
0 and, moreover, remain finite when k →∞.

2.2. STATE SPACE MODELS 12

7. x is an asymptotically wss (wide-sense stationary) process if and only if its stationary

mean and stationary covariance function, denoted by µx and Rx[τ] respectively, are

finite, exist and are defined by

µx , lim
k→∞

µx[k], (2.2.29a)

Rx[τ] , lim
k→∞

Rx[k + τ, k]. (2.2.29b)

In these cases, we also define the stationary variance of x by

σ2
x , lim

k→∞
σ2
x[k]. (2.2.30)

�

An important concept in linear systems is stability. In the typical transfer function

description of linear systems, stability is usually understood as bounded-input bounded-

output, or BIBO stability. That is, a linear system mapping u[k] to y[k] is considered stable

if any bounded input u[k] results in a bounded output y[k]. However, for state space models

a slightly stronger definition is needed for the internal state of the system, x[k].

Internal stability study boundedness and asymptotic behavior of solutions of the follow-

ing expression, when no input signal is supplied:

x[k + 1] = Ax[k], x[k0] = x0 (2.2.31)

so bounds of interest are independent of the choice of initial state x0.

Definition 2.3 (Exponential stability, see [32].).

A system represented through a linear state equation given in the form of (2.2.31) is said to

be exponentially stable on a given equilibrium point (point in the state space where dynamics

of the system is zero), i.e., for the equilibrium point x[k] = 0 since (2.2.31) does not consider

an external input, if there exists positive constants c, γ and λ such that

||x[k]|| ≤ γ||x[k0]||e−λ(k−k0), ∀||x[k0]|| < c, (2.2.32)

with ||x[k]|| representing the norm of vector x[k] at time k, and k0 denotes the initial time

step. Moreover, the system (2.2.31) is said to be globally exponentially stable if it is expo-

nentially stable for any initial state x[k0].

As a consequence, (2.2.31) is exponentially stable if and only if all eigenvalues of matrix

A (as defined on (2.2.22)) lie strictly inside the unit circle. �

For the sake of clarity of Definition 2.3, suppose that λ is a real eigenvalue of A in (2.2.31)

with magnitude |λ| ≥ 1. Then, let p be an eigenvector associated with λ, so the following

expressions allow us to observe that the corresponding solution of (2.2.31) does not go to

zero as k →∞ when x0 = p, for p ∈ Rnx .

Akp = λkp; k ≥ 0, (2.2.33)

2.2. STATE SPACE MODELS 13

Remark 2.2. The same previous analysis can be done in the general case when λ is a

complex eigenvalue of matrix A with |λ| ≥ 1, such as x0 = Re{p} or x0 = Im{p}, that is,

the real or complex component of the corresponding eigenvector respectively. �

If the system in (2.2.22) is unstable, then a controller could stabilize the plant if there

exists a matrix L such that (A−BL) is stable. To illustrate this concept, consider a

simple state-feedback architecture shown in Figure 2.1, where L ∈ Rnu×nx corresponds

to a (matrix) gain that weights the plant state x[k] in order to generate a control signal

u[k] for tracking reference r̄[k] at time k. Usually, in a state-feedback control scheme as

shown in Figure 2.1, rL[k] is a pre-filtered reference translated from the external reference

r̄[k] ∈ Rny which is the desired value that should take y[k] at time k, into a suitable vector

with appropiate dimensions.

Figure 2.1: Classical state-feedback control scheme

It is well known from the literature (e.g., [15, 34]), that a stabilizing controller (matrix

L ∈ Rnu×nx) for the plant G, has to be designed such that the eigenvalues of eig(A−BL)

lie inside the unit circle. Moreover, if we want to focus also on tracking, that is getting y[k]

as close as possible to r̄[k], the prefilter F would be given by

F = −
(
C (A−BL− I)

−1
B
)−1

. (2.2.34)

Then, the state update in (2.2.22) would reduce to

x[k + 1] = (A−BL)x[k]. (2.2.35)

Therefore, if (A − BL) is stable, the state x[k] → 0. In this sense, the u[k] = −Lx[k] can

be understood as a stabilizing feedback control law, since it drives the system state to zero

from any initial condition.

Since in this thesis we are studying dynamic systems subject to random inputs, deter-

ministic notions of stability need to be extended accordingly. In particular, we will focus on

the concept of MSS (mean square stability).

Assumption 2.1. Consider the system in (2.2.22). Then, we will assume that the following

holds:

• The initial state x[0] = x0 is a second order random variable having mean µx0
and

variance matrix Px0
≥ 0.

• The input u is characterized in terms of the state x.

2.2. STATE SPACE MODELS 14

• The noise v is a second order zero-mean white sequence uncorrelated with x0, and

variance matrix Pv ≥ 0.
�

Then, MSS is defined next.

Definition 2.4 (Mean square stability).

The system in (2.2.22) is mean square stable if and only if, for every x0 and every u and

v that satisfy Assumption 2.1, there exist µx ∈ Rnx and Mx ∈ Rnx×nx , Mx ≥ 0, such that

lim
k→∞

E{x[k]} = µx, (2.2.36a)

lim
k→∞

E{x[k]x[k]ᵀ} = Mx. (2.2.36b)

�

Definition 2.4 states that the system (2.2.22) is mean square stable if and only if its state

x has well defined and finite stationary mean and stationary second order moments matrix.

It is often the case, as one of the particular interest in this thesis, that the internal

system x is not directly available and has to be deduced from samples of the (usually noisy)

measured output y.

As intuition may suggest, state-estimators only make sense when it is possible to do so.

Thus, observability is next defined.

Definition 2.5 (Observability).

Consider the system in (2.2.22). Then the state x is said to be completely observable if the

following matrix is full-rank:

rank

C

CA
...

CAnx−1

 = nx, (2.2.37)

where nx is the dimension of the state vector x. �

Although the notion of observability has been extensively treated in the literature, for

the sake of clarity, recall the model in (2.2.22):

x[k + 1] = Ax[k] +Bu[k] + v[k], (2.2.38a)

y[k] = Cx[k] + w[k]. (2.2.38b)

Then, it is straightforward that

y[0] = Cx[0] + w[0]

y[1] = Cx[1] + w[1]

= CAx[0] + CBu[0] + Cv[0] + w[1]

y[2] = CA2x[0] + CABu[0] + CBu[1] + CAv[0] + Cv[1] + w[2]

2.2. STATE SPACE MODELS 15

...

y[n− 1] = CAn−1x[0] + CBu[n− 2] + ...+ CAn−2Bu[0] + Cv[n− 2] + ...+ CAn−2v[0] + ...+ w[n− 1]

which expressed on a matricial form, gives

y[0]

y[1]
...

y[n− 1]

 =

C

CA
...

CAn−1

x[0] +

0 0 ... 0 0

CB 0 ... 0 0
...

...
. . .

...
...

CAn−2 CAn−3 ... CB 0

u[0]

u[1]
...

u[n− 2]

u[n− 1]

+

0 0 ... 0 0

C 0 ... 0 0
...

...
. . .

...
...

CAn−2 CAn−3 ... C 0

v[0]
...

v[n− 2]

v[n− 1]

+

w[0]

w[1]
...

w[n− 1]

 (2.2.39)

Then, from (2.2.39) it can be noted that for reconstructing the initial state at time n − 1

from samples of y up to time n − 1, the referred matrix has to be full-rank. Moreover, for

the system to be completely observable at any time n, it would suffice to choose an arbitrary

n which in the literature it is often chosen as n = nx.

Remark 2.3. This notion of observability on Definition 2.5 remains for the case of non-

strictly causal systems, i.e., D 6= 0 in (2.2.7) (equivalently adding a known input u[k] for

direct influence of y[k]) on (2.2.22), and its proof is straightforward. �

Assuming the system in (2.2.22) is completely observable, the best linear estimator (in

a minimum mean square sense) is given by the Kalman Filter, originally shown in [20, 21],

and covered in any standard text on linear systems such as [35].

Definition 2.6 (Best Linear and Unbiased Estimator).

Assume a linear state space model given by (2.2.22) with disturbances v[k] and w[k] as

uncorrelated (gaussian) white noises with zero-mean and variances Pv and Pw respectively.

Then, the state estimates x̂, constructed from observations of the measured output {y[k], y[k−
1], ..., y[0]} will be given by

x̂[k|j] , E{x[k]|y[0 : j], u[0 : j]}, (2.2.40)

where y[0 : j] represents the subsequence (y[0], y[1], ..., y[j]). Thus, x̂[k|j] is the MMSE

(minimum mean square error) estimate of the state x[k] given the observed output up to

sample j. Corresponding to the state estimate x̂[k|j], let P [k|j] denote the estimation error

variance,

P [k|j] , E{(x[k]− x̂[k|j]) (x[k]− x̂[k|j])ᵀ |y[0 : j], u[0 : j]}. (2.2.41)

Note that the above estimates are difficult to compute for an arbitrary distribution in

v[k] and w[k], so Gaussianity assumption should still hold. If this is the case, estimates can

be described by a simple set of recursive equations, whose estimator is the so-called Kalman

Filter.

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 16

x̂[k|k] = x̂[k|k − 1] + P [k|k − 1]CᵀK[k]e[k] +Bu[k] (2.2.42a)

K[k] = (CP [k|k − 1]Cᵀ + Pw)
−1

(2.2.42b)

e[k] = y[k]− Cx̂[k|k − 1] (2.2.42c)

x̂[k|k − 1] = Ax̂[k − 1|k − 1] (2.2.42d)

P [k|k − 1] = AP [k − 1|k − 1]Aᵀ + Pv (2.2.42e)

P [k|k] = P [k|k − 1]− P [k|k − 1]CᵀK[k]CP [k|k − 1] (2.2.42f)

where as could be deduced, Pu[k] refers to variance of the known input u[k] at time k. �

2.3 Reinforcement Learning with Gaussian Processes

Since we will be dealing with gaussian processes, meaning that this process is completely

determined by its second order moments, i.e. by its mean and covariance functions, an

appropiate derivation of algorithms is required, so subsequent sections in this chapter will

review reinforcement learning algorithms on systems with uncertainty modeled by a gaussian

process.

2.3.1 Uncertainty and Learning

It is broadly accepted that probability theory is an appropiate manner of tackling the

uncertainty representation problem, and accordingly, probabilistic models are within the

most used framework for systems facing uncertainty and disturbances. In a more particular

setup, parametric distributions enable representation and generalization of complex data

within a bounded quantity of parameters, which correspond to statistics that summarize

the knowledge of the initially unknown and empirically constructed distribution.

If a family of distributions is assumed to take place on a random variable over the

analyzed system, parameters should be fully informative in order to be useful. For exam-

ple, mean and variance are sufficient statistics, or parameters for the family of Gaussian

distributions, because its complete description can be specified through these parameters.

Stochastic models can be used in several ways, such as computing statistics like mean

and variance using expectations, or predicting probability of correlated quantities. Consider

two correlated random variables (according to Definition 2.1) with known probability dis-

tributions Pr(X|Y = y) and Pr(Y). Then, the probability of Y = y given that X = x has

been measured, can be computed by using the Bayes rule:

Pr(Y = y|X = x) =
Pr(X = x|Y = y) · Pr(Y = y)

Pr(X = x)
, (2.3.1)

where the probability of X = x can be computed using the law of total probability:

Pr(X = x) =

∫
y∈Y

Pr(X = x|Y = y) · Pr(Y = y)dy. (2.3.2)

In these models, it is assumed that the parameters of distributions are given. On the

other hand, as usually found in real-world applications, parameters have to be inferred

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 17

with a finite set of samples or observations from the phenomenon, if available. A classical

statistical learning procedure refers to the maximum-likelihood estimation.

Let X be a random variable, and x the vector of available samples of X. Assuming

samples of this random variable are independent and identically distributed, a maximum-

likelihood estimation of parameters of X is:

θ∗ = argmaxθL(x|θ), (2.3.3a)

L(x|θ) ∝ ΠiPr(X = xi|θ), (2.3.3b)

with L being the likelihood function. This approach is also often known as frequentist,

because it relies on how frequent are values from observations to infer the parameters of the

model that describes the system.

2.3.2 Reinforcement Learning

When we talk about Reinforcement learning, we refer to the area inside Machine learning,

concerned with solving sequential decision problems modelled by Markovian Decision Pro-

cesses (MDPs). Nevertheless, the applications spectrum has been extended to areas such as

Robotics [23] or Control Theory [17,25,40].

In simple terms, the main objective of this type of learning is to maximize the ex-

pected long-term reward, in an (initially) unknown environment through finding an optimal

sequence of actions to take for a given problem. For instance, a finite-horizon problem imply-

ing the agent (learner) has to choose actions such that the expected return J is maximized

over the next H time steps:

J = EF [

H∑
i=0

ri], (2.3.4)

where ri corresponds to the instantaneous reward obtained at time step i, over an unknown

probability distribution F for the state transition function, which will be empirically ob-

tained through interactions between the learning agent and its environment. Figure 1.2

illustrates the interaction process where the agent perceives both its external and inter-

nal features that allow it to infer its state, and then executes actions through the learned

decision-maker which lead the agent to a certain reinforcement signal (reward or punish-

ment).

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 18

Figure 2.2: Reinforcement Learning scheme

While the agent (the learner) decides the actions to execute, it has to make a trade-off

between exploiting what is already known to avoid executing actions that could lead to lower

utilities, and exploring new solutions that eventually could allow the obtention of bigger

future rewards. This trade-off is usually known as exploration-exploitation dilemma [19],

which has been extensively treated in literature, developing undirected exploration methods

(such as Boltzmann exploration [39]) which explores the whole state-action space by making

a probabilistic choice of possible actions to take, and directed exploration methods, which

use statistical information obtained through past experiences [42].

Then, reinforcement learning can be broadly summarized as a computational approach

to the concept of learning from interactions with the environment, where the agent must

sequentially interact with a (partially) unknown scenario in order to maximize the sum of

(potentially unknown) scalar rewards. This scenario is not limited to the physical location

and features of the real-world environment, but it also extends to internal stimuli that could

affect the agent behavior.

In formal terms, a reinforcement learning problem, formulated as an appropiate MDP is

composed by the tuple < X ,U ,T,R > where

• X : corresponds to the set of all possible states.

• U : denotes the set of actions the agent could take.

• T: X × U × X → [0, 1] is a state transition function, which assigns the probability of

the agent being transferred from state x to state x′ by executing action u.

• R: X × U → R corresponds to a (real-valued) reward scalar function.

• π: X → U is a mapping from states to actions, describing the policy (actions to take

on given states).

When the decision problem involves states that are not being observed, it is necessary

to introduce two new elements to the previous tuple, translating the problem to a POMDP

(Partially Observable MDP)

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 19

• Z = {z1, z2, ..., }: corresponds to the set of observations

• O: 2Ω → [0, 1] denotes the observation function, where Ω : Z×U ×X , and assigns the

probability of making an observation o when executing action u in state x.

The quality of a given policy π is quantified by the value function V π(xt), defined as the

expected (discounted) accumulated reward for starting in state x at time t:

V π(xt) = EF [

∞∑
i=0

γ ir[t+ i]|π], (2.3.5)

where γ ∈ [0, 1] corresponds to the discount factor, r[t+ i] stand for the immediate reward

obtained at time t + i, and expectation is taken over an initially unknown distribution F

for the state transition function, being built experimentally over the interactions with the

environment.

Then, a policy π∗ is said to be optimal, if the following expression holds,

V π
∗
(x) ≥ V π(x), ∀x ∈ X , π (2.3.6)

i.e., the optimal policy π∗ will yield the biggest value function with respect to every possible

policy π, independently of initial state x.

The optimal policy π∗ will satisfy the Bellman optimality expression

V ∗(x) = max
u∈U

∑
x′∈X

p(x′|x, u) (R(x, u) + γV ∗(x′)), (2.3.7)

where V ∗(x) is the short-hand for V π
∗
(x), p(x′|x, u) denotes the probability of reaching

state x′ when u is executed on x and R(x, u) is the obtained reward for executing action u

on state x.

2.3.3 Algorithms

Recalling the basic definitions of MDPs presented in Section 2.3.2, whose main elements

that will be used throughout this thesis, and introducing a slightly more familiar notation

with the one existing in control theory, are

• X : denotes the state space

• U : denotes the action space

• R: X × U → R is the immediate reward

• p : X ×U ×X → [0, 1] is the transition probability distribution, which will be assumed

to be stationary

A useful quantity is the discounted return

D(x[k]) =

∞∑
i=k

γi−kR(x[i], u[i]), (2.3.8)

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 20

which along with the stationarity of the MDP yield

D(x[k]) = R(x[k], u[k]) + γD(x[k + 1]). (2.3.9)

Let us define the expectation operator Eπ as the expectation over all possible trajectories

and all possible rewards collected therein. This allows us to define the value function V (x[k])

as the result of applying this expectation operator to the discounted return D(x[k]), i.e.,

V (x[k]) = Eπ{D(x[k])}. (2.3.10)

Thus,

V (x[k]) = Eπ{D(x[k])}
= Eπ{R(x[k], u[k]) + γD(x[k + 1])}
= Eπ{R(x[k], u[k])}+ γEx[k+1]Eπ{D(x[k + 1])|x[k + 1]}
= Eπ{R(x[k], u[k])}+ γEx[k+1]{V (x[k + 1])} (2.3.11)

This last equality in (2.3.11) is known as the fixed-policy version of the Bellman equation [8].

The policy π that maximizes the expected discounted return from each state is called

an optimal policy, and is denoted by π∗. Then, the value function corresponding to an

optimal policy is called the optimal value, and is denoted by V ∗. While there may exist

multiple optimal policies, the optimal value is unique [9] and may be computed by solving

the Bellman optimality equation

V ∗(x[k]) = max
u∈U

∑
x[k+1]

Pr{(x[k], u[k], x[k + 1])} (R(x[k], u[k]) + γV ∗(x[k + 1])), (2.3.12)

where Pr{x[k], u[k], x[k + 1]} stands for the probability of being transferred to some state

x[k + 1] at time k + 1 when executing action u[k] on state x[k] at time k.

For the remainder of this section, omit the time dependence of the state, i.e. x[k] will be

referred to just as x, and the next state x[k+1] will be x′. Then, one of the two most popular

and convergent in probability dynamic programming algorithms, is the Value Iteration (VI)

algorithm, whose pseudocode is shown Algorithm 1, and works by arbitrarily initializing a

value estimate, for all x ∈ X .

Algorithm 1 Value Iteration algorithm

1: i = 0

2: V̂0(x) = 0 ∀x ∈ X
3: while ∆ > ε do . (for a small positive number ε)

4: for each x ∈ X do

5: V̂i+1(x) = maxu∈U
∑
x′∈X Pr{(x, u, x′)} (R(x, u) + γV (x′))

6: end for

7: ∆ = ‖V̂i+1 − V̂i‖
8: i = i+ 1

9: end while

10: return policy π . such that maximizes (2.3.12)

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 21

This algorithm involves the computation of some norm of the difference between two

subsequent value estimates. Several theoretical results exist, which provide bounds for the

performance of π∗ as a function of ε for different norms, including the maximum norm

‖ · ‖∞ [46] and weighted l2 norms [27].

Algorithm 2 Policy Iteration algorithm

1: π̂0(x) = some random action ∀x ∈ X
2: V̂0(x) = 0 ∀x ∈ X . arbitrarily

3: i = 0

4: while ∆ > ε do . (for a small positive number ε)

5: for each x ∈ X do

6: V̂i+1(x) = maxu∈U
∑
x′∈X Pr{(x, u, x′)} (R(x, u) + γV (x′))

7: end for

8: ∆ = ‖V̂i+1 − V̂i‖
9: i = i+ 1

10: end while

11: policy stable = true

12: i = 0

13: for each x ∈ X do

14: π̂i+1(x) = argmaxu∈U
∑
x′∈X Pr{(x, u, x′)} (R(x, u) + γV (x′))

15: if π̂i(x) 6= π̂i+1(x) then

16: policy stable = false

17: end if

18: end for

19: if policy stable then

20: return policy π̂i
21: else

22: go to line 3

23: end if

On the other hand, Policy Iteration (PI) works by the process of policy improvement.

Specifically, it starts with some initial random policy. Then, at each successive iteration, it

evaluates the value function for the current policy, and performs a policy improvement step

in which a new policy is generated by selecting a greedy action at each state, with respect to

the values of the current policy. If the improved policy is the same as the policy improved

upon, then we are assured that the optimal policy has been found.

The pseudocode for Policy Iteration is shown in Algorithm 2.

Remark 2.4. Note that the subscript for value and policy estimations in Algorithm 1 and

2 respectively, refers to the current iteration of the corresponding Algorithm based on a fixed

set of observations x[k] and u[k], and it has no relation with time steps k. �

Most successful Reinforcement Learning algorithms are descended from one of the two

Dynamic Programming algorithms described above, VI and PI. However, there are two

major features distinguishing the RL setting from the traditional decision theoretic setting.

2.3. REINFORCEMENT LEARNING WITH GAUSSIAN PROCESSES 22

First, while in decision theory it is assumed that the environment model is fully known,

in RL no such assumption is made. Second, in RL, the learning process is usually assumed

to take place online, namely, concurrently with the accumulation of actual (or simulated)

data acquired by the learning agent as it explores its environment. These two features make

RL a significantly more difficult challenge, and place serious constraints on any potential RL

algorithm. Probably the two best known RL algorithms, TD(λ) [38] and Q-learning [43],

serve well to demonstrate how RL methods handle these constraints. For simplicity we

assume that the state and action spaces are finite, and that the state values, or state-action

values are stored explicitly in a lookup table.

TD(λ) is aimed at evaluating the value function for a given policy π. The input to the

algorithm is a sequence of state-rewards couples, generated by the MDP controlled by the

policy π. The idea in TD(λ) is to gradually improve value estimates by moving them towards

the weighted average of multi-step lookahead estimates, which take into account the observed

rewards. In the simplest case, of λ = 0, this amounts to moving the value estimate of the

current state, V̂ (x), toward the one-step lookahead estimate R(x, u) + γV̂ (x′). Temporal

difference (TD) methods avoid making direct use of the transition model by sampling from

it.

The pseudocode for TD(0) is given in Algorithm 3. The update term R(x[k], u[k]) +

γV̂ (x[k + 1])− V̂ (x[k]) is referred to as the temporal difference at time k + 1.

Algorithm 3 Tabular TD(0) algorithm

1: V̂ (x[0]) = 0 ∀x ∈ X
2: for k = 1, 2, ..., n do

3: Observe samples (x[k], R(x[k], u[k]), x[k + 1])

4: V̂ (x[k]) = V̂ (x[k]) + α
(
R(x[k], u[k]) + γV̂ (x[k + 1])− V̂ (x[k])

)
5: end for

6: return V̂

In many cases, RL tasks are naturally divided into learning episodes. In such episodic

learning tasks, the agent is placed at some (typically randomly chosen) initial state, and

is then allowed to follow its policy until it reaches a terminal state, where the episode

terminates and a new one may begin. A terminal state is modeled as a state with zero

reward and with only self transitions, for any action. Then, if x[k + 1] is terminal, in the

TD(0) update, as well as in algorithms presented in the sequel, we define V̂ (x[k + 1]) = 0.

As any value estimation algorithm requires a policy improvement step, and it involves

knowledge of the transition model which is typically unavailable. This is often solved by

introducing state-action values (also known as Q-values), rather than just state values.

For a given policy π, the Q-value for the state-action pair (x[k], u[k]) is the expected

discounted return over all trajectories starting from x[k], for which the first action is u[k],

and with all subsequent actions chosen according to π. The optimal state value V ∗ is related

to the optimal state-action value Q∗ as

V ∗(x[k]) = max
u∈U

Q∗(x[k], u[k]). (2.3.13)

2.4. SUMMARY 23

As on TD algorithms, where expectations were replaced with actual samples, we can by

analogy derive the Q-learning algorithm, which can be viewed as an asynchronous, stochastic

version of VI, and whose pseudocode is shown in Figure 4.

Algorithm 4 Q-learning algorithm

1: Q̂(x[0], u[0]) = 0 ∀x ∈ X , u ∈ U
2: for k = 1, 2, ..., n do

3: Observe x[k], u[k], R(x[k], u[k]), x[k + 1]

4: Q̂(x[k], u[k]) = Q̂(x[k], u[k])+α
(
R(x[k], u[k]) + γmaxu[k+1] Q̂(x[k + 1], u[k + 1])− Q̂(x[k], u[k])

)
5: end for

6: return Q̂

Then, by assuming Q̂ = Q∗ (i.e., Q-learning has converged to the optimum), then an

optimal action for each state can be easily computed by a single maximization operation

π∗(x[k]) = argmax
u[k]

Q∗(x[k], u[k]), (2.3.14)

with ties broken arbitrarily.

TD and Q-learning algorithms, as well as many other algorithms relying on a lookup-

table representation, are useful in providing a proof-of-concept. However, real world prob-

lems can rarely be solved using such representations, due to the large, and sometimes infinite

state and action spaces which characterize such problems. Since a tabular representation

is unfeasible, it is necessary, in such problems, to use some form of function approximation

to represent the value function and possibly also the policy, which for synthesis purposes of

this current chapter, will be introduced where appropiate.

2.4 Summary

This chapter has provided basic definitions and results that will play a relevant role in

the remainder of this thesis. Other known results of less widespread use can be found in

the appendix. Nevertheless, most definitions and the notation introduced in this chapter

and appendix are sometimes used without further comment in the forthcoming chapters.

Therefore, if the reader finds an unfamiliar symbol, they should be able to find its definition

in this chapter, in the appendix or in the list of symbols at the beginning of this thesis.

Chapter 3

STATE-FEEDBACK CONTROL

3.1 Introduction

In this chapter we will focus on state-feedback control for a given plant, whose dynamics

will be assumed to be described by a linear model. Although later in the following chapters

this assumption could be relaxed, we will still assume that the stabilizing controller to be

designed is also linear in terms of the state of the plant and the state of its own dynamics.

Complexity of the controller is usually desired to be kept as low as possible, since this has

a direct impact on the required computation for generating control signals.

Then, this chapter will introduce the general case of state-feedback control, along with

some particular cases that are often found in the literature. Later on, a stability analysis

will be made for such cases, stating conditions that ensure that the control loop remains

stable in the mean-square sense for a given plant.

Partial observability on the state of the plant will be tackled by substituting the true state

for suitable Kalman filter estimations. Then, we will re-arrange appropiately the Kalman

filter equations before we present the corresponding stability analysis when feedback is given

on estimations instead of on the true state.

3.2 Modelling the controller

Recall that the plant G, at the moment, is assumed to be linear and strictly causal, i.e., its

dynamics are described by

x[k + 1] = Ax[k] +Bu[k] + v[k], (3.2.1a)

y[k] = Cx[k] + w[k], (3.2.1b)

with uncorrelated (Gaussian) zero-mean noises v[k] and w[k] with constant variances Pv and

Pw respectively, and (A,B,C) are the state space variables with dimensions A ∈ Rnx×nx,

B ∈ Rnx×nu and C ∈ Rny×nx, where nx, nu and ny stand for the number of states, number

of control signals and number of outputs respectively.

Recall the classical state-feedback architecture shown in Figure 2.1 on Section 2.2, where

L ∈ Rnu×nx corresponds to a (matrix) gain that weights the plant state x[k] in order to

generate a control signal u[k] for tracking reference r̄[k] at time k. Usually, on a state-

feedback control scheme as shown in Figure 3.1, rL[k] (or r[k] in Figure 3.2) is a pre-filtered

24

3.2. MODELLING THE CONTROLLER 25

reference translated from the external reference r̄[k] ∈ Rny which is the desired value that

should take y[k] at time k, into a suitable vector with appropiate dimensions.

Figure 3.1: Classical state-feedback control scheme

It is well known from the literature, that a stabilizing controller (matrix L ∈ Rnu×nx)

for the plant G, has to be designed such that the eigenvalues of eig(A− BL) lie inside the

unit circle. Moreover, if we want to focus also on tracking, that is getting y[k] as close as

possible to r̄[k], the prefilter F would be given by

F = −
(
C (A−BL− I)

−1
B
)−1

. (3.2.2)

If we want to design a controller such that it has its own dynamics, we could consider a

state-feedback control scheme as shown in Figure 3.2,

−

r
F

_
r

C

u
G

y

x

Figure 3.2: State-feedback control scheme

where we will consider again that the reference vector r[k] is a pre-filtered version of r̄[k],

resulting in a nu-elements vector representing the desired output y[k] which is contained in

r̄[k]. Then, the controller is synthesized in C, and assuming linearity, it can be described in

a state model by

xc[k + 1] = Acxc[k] +Bcx[k], (3.2.3a)

u[k] = r[k]− (Ccxc[k] +Dcx[k]) , (3.2.3b)

where the c subscript is set to stress the difference between matrices (A,B,C) from the

plant model and (Ac, Bc, Cc, Dc) from the controller, as well as the state of the plant, x[k],

and the internal state of the controller itself, xc[k].

Note that once the controller has been designed, the pre-filter F for transforming ref-

erence r̄[k] into r[k] should be chosen such that the transfer function from r̄[k] to y[k] is

unitary, in order to ensure stationary tracking. Indeed, prefilter F is given by

F = −
(
C
(
A− I −BDc +BCc (Ac − I)

−1
Bc

)−1

B

)−1

(3.2.4)

3.2. MODELLING THE CONTROLLER 26

Remark 3.1. It can be seen from (3.2.3), that when Cc = 0 we have exactly the same

state-feedback law as in the simpler case (static controller) shown in Figure 3.1, with Dc

and L being equivalent. When this is the case, we could still have a dynamic controller, but

the dynamics (and hence stability) of the controller itself do not play any role in the stability

of the control loop, allowing the controller to be unstable, as long as it stabilizes the plant.

In theory there is no problem with having an unstable controller that stabilizes the

control loop, but in practice this represent a non-desirable choice, since in practical appli-

cations (like on Robotics), an unstable controller could lead the physical system (the robot

respectively) to crash or become damaged.

Regarding the dimension of parameters of the state space model of the controller, note

that Ac ∈ Rnxc×nxc , Bc ∈ Rnxc×nx, Cc ∈ Rnu×nxc and Dc ∈ Rnu×nx, where nxc is the

number of elements of the internal state of the controller xc[k], stressing that is not necessary

to have nxc = nx.

Remark 3.2. If we set the reference r[k] = 0 ∀k, and Cc = 0, the problem is reduced to

regulation. The main objective of the regulation problem is to make the state x[k] decrease

to zero as k →∞, which is the reason for having r[k] = 0.

�

When tackling the partially observable case, due to missing elements from the state

vector, or given that there could be high costs associated with measuring each element from

the resulting state, suitable estimations have to be made. Such a sub-system providing

estimations, will be called an observer. Then, the classical state-feedback scheme in Figure

3.1 which makes use of the estimated state instead of the true state is depicted in Figure

3.3, while our proposed approach is shown in Figure 3.4.

Figure 3.3: Classical (observed) state-feedback control scheme

−

r
F

_
r u

C x̂ Obs.

y
G

Figure 3.4: Proposed (observed) state-feedback control scheme

The observer will be modeled by a Kalman Filter, shown in Section 2.2, whose equations

3.3. STABILITY ANALYSIS 27

could be re-arranged as

x̂[k + 1] = Ax̂[k] +Bu[k] +K[k] (y[k]− Cx̂[k]) (3.2.5a)

K[k] = (C (AP [k − 1]Aᵀ + Pv)C
ᵀ + Pw)

−1
(3.2.5b)

noting that notation on time dependency for estimations has been reduced to x̂[k] = x̂[k|k],

and consequently the estimation error variance P [k] = P [k|k].

Then, for the particular case of interest of observed state feedback, Kalman filter yields

x̂[k + 1] = (A−BDc −K[k]C) x̂[k] +Br[k]−BCcxc[k] +K[k]y[k] (3.2.6a)

P [k + 1] = (A−K[k]C)P [k] (A−K[k]C)
ᵀ

+ Pv +K[k]PwK
ᵀ[k] (3.2.6b)

K[k] = (C (AP [k − 1]Aᵀ + Pv)C
ᵀ + Pw)

−1
(3.2.6c)

It can be observed that when the plant achieves stationarity, kalman filter gain, K[k]

will converge to a constant value, in particular a matrix K ∈ Rnx×ny whose elements are

constant values.

3.3 Stability analysis

Before going deeper into the more general case, when the feedback loop is based on state

estimations, we will analyze the state-feedback control scheme over the true state, which is

expected to give some directions into what to do in the partially observable case.

Theorem 3.1. Consider a strictly causal plant described by (3.2.1), and a controller given

by (3.2.3). Then, a MSS controller will stabilize (in mean-square sense) the plant if and

only if the eigenvalues of Ā lie inside the unit circle, where Ā is a block matrix given by

Ā =

[
A−BDc −BCc

Bc Ac

]
. (3.3.1)

Given that Ā is not symmetric nor triangular, sufficient and neccessary conditions on eigen-

values of matrices that compose Ā cannot be obtained. Nevertheless, the following expression

must hold for representing a sufficient condition in order to obtain a stable controller that

stabilizes the plant, with finite x[0], xc[0] and (A−BDc) non-singular,

max
(
|eig(A−BDc)|, |eig(Ac +Bc(A−BDc)

−1BCc)|
)
< 1, (3.3.2)

where making a slight abuse of notation, eig(·) denotes the greatest eigenvalue of ·.
�

Proof: Consider an augmented state vector x̄[k] =
[
xᵀ[k] xᵀc [k]

]ᵀ
. Then, the aug-

mented system will be given by

x̄[k + 1] =

[
A−BDc −BCc

Bc Ac

]
︸ ︷︷ ︸

Ā

x̄[k] +

[
B

0nx×nu

]
︸ ︷︷ ︸

B̄

r[k] +

[
v[k]

0nxc×1

]
︸ ︷︷ ︸

v̄[k]

, (3.3.3)

3.3. STABILITY ANALYSIS 28

where 0nxc×1 is a zero-entries column vector with nxc elements.

Then, unrolling the system in (3.3.3) in terms of the initial (augmented) state, yields

x̄[k + 1] = Āk+1x̄[0] +

k∑
i=0

Āi
(
B̄r[k − i] + v̄[k − i]

)
, (3.3.4)

where given that v[k] is zero-mean white noise, its expectation is given by

ξ{x̄[k + 1]} = ξ{Āk+1}x̄[0] +

k∑
i=0

ξ{ĀiB̄r[k − i]}, (3.3.5)

which corresponds to a matrix power series, so for having finite ξ{x̄[k+1]} in the limit when

k →∞, Ā has to be such that

‖Ā‖2 < 1, (3.3.6)

which in terms of its greatest eigenvalue, the condition is turned into

|eig(Ā)| < 1. (3.3.7)

It can be seen that making an analogous analysis for the second order moment of x̄[k] yields

the same condition for Ā, given that the only term affecting variance of v̄[k] is v[k] and its

variance is already assumed to be finite.

Then, in order to obtain a sufficient condition in terms of the matrices in Ā, it can be

decomposed by using LU factorization,

Ā =

[
Inx×nx 0nx×nxc

Bc(A−BDc)
−1 Inxc×nxc

]
︸ ︷︷ ︸

L

·
[
A−BDc −BCc
0nxc×nx Bc(A−BDc)

−1BCc +Ac

]
︸ ︷︷ ︸

U

(3.3.8)

An upper bound on the eigenvalues of a matrix product L · U can be given by (see Lemma

A.2 on Appendix),

eig(Ā) ≤ eig(U), (3.3.9)

by noting that all eigenvalues of L are 1.

Finally, given that the eigenvalues of a diagonal block matrix are given by the union of

the eigenvalues of such matrices,

eig(U) = eig(A−BDc) ∪ eig(Ac +Bc(A−BDc)
−1BCc), (3.3.10)

so in order to ensure |eig(Ā)| < 1, we restrict our attention to its upper bound,

max
(
|eig(A−BDc)|, |eig(Ac +Bc(A−BDc)

−1BCc)|
)
< 1 (3.3.11)

��
Recall that eigenvalues have a direct relationship with the speed that the time-response

achieves stationarity. Indeed, the larger the eigenvalues are (remaining inside the unit

circle), means the transient of the time-response will disappear faster. If on the other hand,

the eigenvalues are located outside the unit circle, the time-response will oscillate. Then,

3.3. STABILITY ANALYSIS 29

assume for a moment that Bc = 0 or Cc = 0, so it is clear to see that the controller can

not be internally unstable and Dc has to be designed such that (A−BDc) have eigenvalues

inside the unit circle, otherwise stability of the loop and of the controller itself can not be

guaranteed.

Theorem 3.2. Consider a strictly causal plant described by (3.2.1), and a controller given

by (3.2.3). Then, a MSS controller will stabilize (in mean-square sense) the plant if and

only if the eigenvalues of ¯̄A lie inside the unit circle, where ¯̄A is a block matrix given by

¯̄A =

 A−KC 0nx×nxc 0nx×nx
−Bc Ac Bc
BDc −BCc A−BDc

 . (3.3.12)

As conditions established in Theorem 3.1, the following expression must hold for representing

a sufficient condition in order to obtain a stable controller that stabilizes the plant, with finite

x[0], xc[0], arbitrary initial (finite) guess x̂[0] and P [0], and (A−BDc) non-singular,

max (|eig (A−KC) |, |eig(Ac)|, |eig (A−BDc) |) < 1, (3.3.13)

where time dependency of K has been omitted for simplicity. �

Proof: The convergence of the expected value of the state will be analyzed, since analysis

of second order moments yields the same conditions for this case again, as in Theorem 3.1.

In a similar form, we can build an augmented system,

¯̄x[k + 1] =

 A−KC 0nx×nxc 0nx×nx
−Bc Ac Bc
BDc −BCc A−BDc

︸ ︷︷ ︸

¯̄A

¯̄x[k] +

 0nx×nu
0nxc×nu

B

︸ ︷︷ ︸

¯̄B

r[k] +

 −Kw[k]

0nxc×1

v[k]

︸ ︷︷ ︸

¯̄v[k]

,

(3.3.14)

where ¯̄x[k] =
[
x̃ᵀ[k] xᵀc [k] xᵀ[k]

]ᵀ
, and x̃[k] corresponds to the estimation error at time

k,

x̃[k] = x[k]− x̂[k]. (3.3.15)

Then, unrolling the system in terms of its initial state, yields

¯̄x[k + 1] = ¯̄Ak+1 ¯̄x[0] +

k∑
i=0

¯̄Ai
(

¯̄Br[k − i] + ¯̄v[k − i]
)
, (3.3.16)

where given that both v[k] and w[k] are zero-mean white noises, its expectation is given by

ξ{¯̄x[k + 1]} = ξ{ ¯̄Ak+1}¯̄x[0] +

k∑
i=0

ξ{ ¯̄Ai ¯̄Br[k − i]}, (3.3.17)

so for having finite ξ{¯̄x[k + 1]} in the limit when k →∞,

|max eig(¯̄A)| < 1. (3.3.18)

3.4. SIMULATION RESULTS 30

Then, in order to obtain a sufficient condition in terms of the matrices on ¯̄A, it can be

decomposed by using LU factorization,

¯̄A = L · U, (3.3.19)

where

L =

 Inx×nx 0nx×nxc 0nx×nx
0nxc×nx Inxc×nxc Bc (A−BDc)

−1

0nx×nx 0nx×nxc Inx×nx

 , (3.3.20a)

U =

 A−KC 0nx×nxc 0nx×nx
−Bc Ac 0nxc×nx
BDc −BCc A−BDc

 . (3.3.20b)

Then, given that the eigenvalues of L are all equal to 1, the upper bound for the eigen-

values of ¯̄A is given by

eig(Ā) ≤ eig(U), (3.3.21)

Finally,

eig(U) = eig(A−KC) ∪ eig(Ac) ∪ eig(A−BDc), (3.3.22)

so in order to ensure |eig(¯̄A)| < 1, we restrict our attention to its upper bound,

max (|eig(A−KC)|, |eig(Ac)|, |eig(A−BDc)|) < 1 (3.3.23)

��
Theorem 3.2 estates that if the controller is internally stable, then the observer has to

be designed such that the estimation error remains bounded (zero for an optimal filter in a

steady state). Since the observer is given by a Kalman filter, which gives stable estimations,

we focus on the choice of Ac and Dc for satisfying conditions in Theorem 3.2 .

3.4 Simulation results

The analysis made in this Chapter make use of a strong assumption of full knowledge

of the model of the plant, in particular, knowledge about variance of both process and

measurement noise, and model parameters A, B and C. This assumption can not be fulfilled

in practical applications, since modelling error or approximations can be very harmful for

the controller design, so in the following chapters we will focus on learning those (or part of

those) parameters. Before validating results shown in this Chapter, we will first implement

a simulation of an arbitrary plant, whose model would be such that it allow us to show some

interesting properties in the results developed.

First, consider a SISO plant (one-input one-output, nu = 1, ny = 1) be given by

x[k + 1] = Ax[k] +Bu[k] + v[k], (3.4.1a)

y[k] = Cx[k] + w[k], (3.4.1b)

where as before, v[k] and w[k] are the process and measurement noise respectively, zero-mean

and unitary variance white noises.

3.4. SIMULATION RESULTS 31

Let A, B and C be given by

A =

[
0.5 0

0.7 1.2

]
, (3.4.2a)

B =

[
0

0.1

]
, (3.4.2b)

C =
[

1 1
]
. (3.4.2c)

It can be observed that the plant is internally unstable, since one of its eigenvalues lie

outside the unit circle. Then, parameters Ac, Bc, Cc and Dc of the controller have to be

found for generating a (scalar) control signal u[k],

xc[k + 1] = Acxc[k] +Bcx[k], (3.4.3a)

u[k] = r[k]− (Ccxc[k] +Dcx[k]) , (3.4.3b)

whose matrices were set to

Ac = 0.4 Bc =
[

1 −1.52
]
,

Cc = −0.5 Dc =
[

0.3 2.1
]
.

These values were chosen such that the augmented system matrix Ā from Theorem 3.1 has

prescribed eigenvalues. Indeed, eig(Ā) ∈ {0.5, 0.59, 0.8}.

Remark 3.3. As the reader may infer, hand-tuning of a dynamic state-feedback controller

can be time consuming, so actually the previous parameters were obtained from the proposed

reinforcement learning approach for tuning the controller parameters under this same plant

in the following Chapter. �

Note from (3.4.3), that we have assumed for this first example that the feedback is made

on the true state. The reference has been set to

r[k] =

{
0 k < 60

10 k ≥ 60
(3.4.4)

We compare this control scheme with the classical state-feedback architecture shown in

Figure 3.1, with output yL[k], such that the control signal is given by

uL[k] = rL[k]− Lx[k], (3.4.5)

and L is set to

L =
[

0.3 4
]
,

such that eig(A−BL) ∈ {0.5, 0.8}.
As expected, from analyzing eigenvalues of Ā and A − BL, we see that the closed loop

system achieves stationarity with the same velocity (given by its greatest eigenvalue, which

represents the velocity of the slowest disappearing natural mode), but with different values

for Dc and L. This is possible because in Figure 3.2, we added degrees of freedom in the

3.4. SIMULATION RESULTS 32

controller with respect to the scheme shown in Figure 3.1, at the cost of introducing an

additional natural mode in the closed loop response.

As shown in simulation results depicted in Figure 3.5, the introduced degrees of freedom

in the controller allow us to set matrices values such that the closed loop response achieves

stationarity as fast as desired, and confines the control signal (output of controller) to be

smaller than in the classical architecture.

Figure 3.5: Full state-feedback, step reference tracking

Figure 3.6 shows the same comparison for a sinusoidal reference signal, where the same

results remain, namely, speed of convergence is the same although the dynamic controller

achieves lower peaks in the control signal, despite the difference in the values of Dc and L,

due to the additional degrees of freedom. Nevertheless, the reader should note that reference

tracking in this case will be achievable only if the closed loop dynamics are fast enough to

keep track of changes in the reference.

Figure 3.6: Full state-feedback, sinusoidal reference tracking

Figure 3.7 shows the external reference and its pre-filtered version injected into the

control system in both previous examples. Given that the pre-filter F depends on the

architecture of the state-feedback control loop, the pre-filtered version is different for each

3.4. SIMULATION RESULTS 33

case, so according to control signals given by (3.4.3b) and (3.4.5), the input of the plant in

each case will have a different amplitude.

k

0 100 200

A
m

p
lit

u
d
e

0

5

10

15

20

25
r̄[k]

r[k]

rL[k]

k

0 100 200

A
m

p
lit

u
d
e

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
r̄[k]

r[k]

rL[k]

Figure 3.7: Pre-filtered reference

For the partially observable case, we set exactly the same values for the controller pa-

rameters, which now are given by

xc[k] = Acxc[k] +Bcx̂[k], (3.4.6a)

u[k] = r[k]− (Ccxc[k] +Dcx̂[k]) , (3.4.6b)

and their performance was compared with the (observed) state-feedback control law

u[k] = rL[k]− Lx̂[k], (3.4.7)

Results are shown in Figure 3.8 and 3.9 for a step reference and sinusoidal reference respec-

tively.

Figure 3.8: Observed state-feedback, step reference tracking

3.5. SUMMARY 34

Figure 3.9: Observed state-feedback, sinusoidal reference tracking

Figure 3.8 and 3.9, also shows the evolution of the (trace) estimation error variance,

and the evolution of one of the eigenvalues of (A −KC) (the other one is fixed due to the

nature of A chosen in these examples), noting that it remains inside the unit circle, and as

expected, it achieves its stationary value as soon as the estimation error variance settles.

3.5 Summary

This chapter has introduced a rarely used and more general scheme for state-feedback con-

trol, including a controller allowed to have its own dynamics instead of having just a feedback

gain. Also, conditions that ensure mean-square stability for a certain plant were given.

Simulation results illustrates validation of expected theoretical results, showing that the

proposed controller scheme performs the same as the classical one in terms of the tracking

error, but this is achieved at a lower effort in terms of the control signal, at the cost of

tuning more parameters, a problem that will be tackled in the following chapter.

Simulation results were implemented on an arbitrary plant for both cases: state-feedback

over the true state, and a feedback loop based on state estimations from a Kalman filter.

Chapter 4

ADAPTIVE CONTROL USING

REINFORCEMENT LEARNING

State feedback controllers are appealing due to their structural simplicity. Nevertheless,

when stabilizing a given plant, their dynamics could lead the gain of a static feedback con-

troller to take higher values than desired. On the other hand, a dynamic state feedback

controller is capable of achieving the same or even better performance by introducing ad-

ditional parameters into the model to be designed. In this thesis, the Linear Quadratic

Tracking problem will be tackled using a (linear) dynamic state feedback controller, whose

parameters will be chosen by means of applying reinforcement learning techniques, which

have been proved to be specially useful when the model of the plant to be controlled is

unknown or inaccurate.

4.1 Introduction

Reinforcement learning (RL) is tipically concerned with solving sequential decision problems

modelled by Markov Decision Processes (MDPs). Applications of RL, as a research field

within Machine Learning, has been extended to areas such as Robotics [23] or Control

Theory [17, 25, 40], by means of choosing a suitable representation of the problem to be

solved.

The LQR, i.e., the regulator problem when the system is assumed to be linear, and the

performance index is given in terms of a quadratic function [2], is particularly appealing

given that its solution is obtained by solving an algebraic Riccati equation (ARE). Then, PI

algorithms basically start with an admissible control policy and then iterate between policy

evaluation and policy improvement steps until variations on the policy or the specified value

function are negligible, as seen in [11,26,41].

On the other hand, the linear quadratic tracking (LQT) problem also assumes a linear

model for the process dynamics and a quadratic function for the performance index, but

the main objective is to design a controller such that the measured output of the process

to be controlled, follows an exogenous reference signal, so the LQR could be considered

as a particular case of the LQT problem. Although, as mentioned before, RL algorithms

have been extensively applied for solving the LQR problem, the LQT has not received much

attention in the literature mainly because for most reference signals the infinite horizon cost

35

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 36

becomes unbounded [7]. Work in [30] tackles the problem in the continous time domain by

solving an augmented ARE obtained from the original system dynamics and the reference

trajectory dynamics, while [22] take a similar approach for the discrete-time case, where a

Q-learning algorithm is obtained for solving the LQT problem without any model knowledge.

Then, when considering noisy systems, the performance index and notions of stability

have to be modified accordingly. This problem has been extensively treated in literature from

the classical control, or model-based approach [13,18,47], unlike on the learning paradigm.

[24] used neural networks for reducing calculus efforts in providing optimal control for the

stochastic LQR, while other works focus on relaxing assumptions on the ARE under different

scenarios, but still requiring knowledge of the system dynamics [12,49].

The remainder of this chapter is organized as follows: Section 4.2 shows the synthesis pro-

cedure for obtaining a stabilizing dynamic controller for minimizing the LQT performance

criteria, and the main results. Section 4.3 gives an illustration of experimental results in a

simulation environment.

4.2 Controller Synthesis using Reinforcement Learning

When tackling the problem of making a system follow a given trajectory, the main objective

is to find the appropiate control signals (or actions that the controller should generate) for

making a variable of the system to be controlled to keep track of the desired reference value.

Then, as seen in the previous chapter, a control signal u[k] must be generated and used

as input of the controlled system, which has an output y[k] that should keep track of the

reference r̄[k] at time k. Therefore, a model is needed.

One of the typical options is to assume a given structure for the model, and then tune

its parameters until the model and real system dynamics match. Another option, could be

to use physical laws for building a model and set relations between all the variables of the

system.

Recall that a (stochastic) linear, discrete-time and strictly causal system has a state

space representation given by (2.2.22), i.e.:

x[k + 1] = Ax[k] +Bu[k] + v[k], (4.2.1a)

y[k] = Cx[k] + w[k], (4.2.1b)

where x[k] ∈ Rnx , y[k] ∈ Rny and u[k] ∈ Rnu corresponds to the internal state, measured

output and control signal respectively at time k, and A,B,C and D are (usually) known

matrices of appropiate dimensions, while v[k] and w[k] are uncorrelated (gaussian) zero-

mean white noises, namely process and measurement noise with constant variance Pv and

Pw respectively.

When considering a (static) linear state feedback controller, the control law would be

given by

u[k] = F r̄[k]− Lx[k], (4.2.2)

where L ∈ Rnu×nx stands for the feedback gain, and F is a pre-filter such that y[k] gets as

close as possible to r̄[k].

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 37

Then, the performance index for the stochastic infinite-horizon LQT problem at time k

will be given by

J [k] = ξ{
∞∑
i=k

(r̄[i]− y[i])
ᵀ
Q (r̄[i]− y[i]) + uᵀ[i]Ru[i]}, (4.2.3)

with Q > 0 and R ≥ 0 weighting matrices of appropiate dimensions and last (quadratic)

term is considered for avoiding a high-amplitude control signal.

Since we are dealing with stochastic systems, an appropiate notion of stability is given

by mean-square stability (see Definition 2.4).

Lemma 4.2.1.

The process given by (2.2.22), whose state is given by x[k] at time k, will be mean-square

stable (MSS) if and only if

lim
k→∞

|ξ{x[k]xᵀ[k]}| <∞, (4.2.4)

independently of the initial state x[0] = x0.

Moreover, the controller (4.2.2) stabilizes the system in (2.2.22), if the reference r̄[k]

decays asymptotically to zero, and L is such that the closed-loop eigenvalues are inside the

unit circle, i.e.,

lim
k→∞

r̄[k] = 0, (4.2.5a)

|λ̄ (A−BL) | < 1. (4.2.5b)

�

Proof:

For the definition of mean square stability, the reader is encouraged to see [35]. Although the

conditions set on Lemma 4.2.1 can be found in standard stochastic control theory literature,

we show how these conditions are obtained for sake of clarity.

By replacing (4.2.2) in (2.2.22), the second order moments matrix ofMx[k] = ξ{x[k]xᵀ[k]}
are given by

Mx[k] = (A−BL)Mx[k − 1] (A−BL)
ᵀ

+BMr̄[k − 1]Bᵀ + Pv, (4.2.6)

with Pv according to (2.2.22), and Mr̄[k] = ξ{r̄[k]r̄ᵀ[k]}.
Then, in terms of the initial state x[0] = x0,

Mx[k] = (A−BL)
k
Mx[0] (A−BL)

kᵀ

+

k∑
i=1

(A−BL)
i−1

(BMr̄[k − i]Bᵀ + Pv) (A−BL)
i−1ᵀ

,

where it can be seen that for the system being MSS, it is necessary to get Mr̄[k] bounded

as k grows to infinity, so r[k] (or rL[k] depending on the state-feedback architecture), and

therefore r̄[k] has to decay asymptotically. Since the factor (A−BL) is part of a matrix

power series, its spectral radium has to be less than unit, which directly involves

|λ̄ (A−BL) | < 1. (4.2.7)

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 38

���
The asymptotically decaying assumption in reference r̄ limits the class of trajectories to

be used, and more importantly, sense of minimality in (4.2.3) is lost. Therefore, as in [22],

the following section will introduce a discounted performance index for the LQT setup, and

assuming the reference is being generated by a system Tr.

4.2.1 Problem Formulation

Recall the dynamic state feedback controller in the previous chapter, allowing it to have

its own dynamics component in the resulting control signal, but still in the realm of linear

controllers:

xc[k + 1] = Acxc[k] +Bcx[k], (4.2.8a)

u[k] = F r̄[k]− (Ccxc[k] +Dcx[k]) , (4.2.8b)

where the c subscript is set to stress the difference between matrices (A,B,C) from the plant

model and (Ac, Bc, Cc, Dc) from the controller, as well as the state of the plant, x[k], and

the internal state of the controller itself, xc[k]. Also, there is a prefilter F for transforming

reference r̄[k] into r[k] which should be chosen such that the transfer function from r̄[k] to

y[k] is unitary, in order to ensure stationary tracking.

Then, the performance index for the stochastic infinite-horizon LQT problem at time k

will be given by

J [k] = ξ{
∞∑
i=k

(r̄[i]− y[i])
ᵀ
Q (r̄[i]− y[i]) + uᵀ[i]Ru[i]}, (4.2.9)

with Q > 0 and R ≥ 0 weighting matrices of appropiate dimensions.

The asymptotically decaying reference r̄[k] requirement is also necessary for convergence

of the sum in the performance index for the stochastic LQT problem, as can be seen in

(4.2.9). This requirement can be relaxed when introducing a discount factor, γ ∈ (0, 1),

such that

J [k] = ξ{
∞∑
i=k

γi−k (zᵀ[i]Qaz[i] + uᵀ[i]Ru[i])}, (4.2.10)

with

z[k] =

[
(r̄[k]− y[k])

xc[k]

]
, Qa =

[
Q1 0

0 Q2

]
, (4.2.11)

where both Q1 and Q2 are positive definite matrices, penalizing the control error and avoid-

ing to get the dynamics of the controller itself boundless respectively.

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 39

4.2.2 PI for solving the stochastic LQT with known dynamics

In order to make the LQT problem look more like a RL problem, let the value function

V (X[k]) be

V (X[k]) = J [k], (4.2.12)

where X[k] stands for an augmented state vector containing the internal state of the process

to be controlled, the state of the controller itself and the exogenous reference, i.e.,

X[k] =
[
xᵀ[k] xᵀc [k] r̄ᵀ[k]

]ᵀ
. (4.2.13)

Then, the value function can be written as

V (X[k]) = ξ{
∞∑
i=k

γi−k (tr (PwQ1) +Xᵀ[i]Q̄X[i] + uᵀ[i]Ru[i]
)
}, (4.2.14)

with Q1 as on (4.2.11) and Q̄ given by

Q̄ =

 CᵀQ1C 0 −CᵀQ1

0 Q2 0

−Q1C 0 Q1

 . (4.2.15)

Theorem 4.2.1.

Consider the control law

u[k] = F r̄[k]− (Ccxc[k] +Dcx[k]) , (4.2.16)

with xc[k] as described in (4.2.8), and r̄[k] produced by the model

r̄[k + 1] = Tr r̄[k], (4.2.17)

Then, assuming the optimal value function is quadratic in the augmented state vector, i.e.,

V ∗ (X[k]) = Xᵀ[k]PX[k] + g[k], (4.2.18)

for some stationary and symmetric matrix P > 0, and g[k] such that

g[k + 1] =

(
1

γ

)
g[k] + tr

(
1

γ
PwQ1 + PvP11

)
, (4.2.19)

parameters (F,Cc, Dc) will be given by

F = γZ−1BᵀP13Tr, (4.2.20a)

Cc = −γZ−1BᵀP12Ac, (4.2.20b)

Dc = −γZ−1M, (4.2.20c)

with

Z = (R+ γBᵀP11B) , (4.2.21a)

M = (AᵀP11B +Bᵀ
c P21B) , (4.2.21b)

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 40

and each matrix Pij from P on (4.2.18) is such that

P11 = CᵀQ1C + γ (AᵀP11A+Bᵀ
c P21A (4.2.22a)

+AᵀP12Bc +Bᵀ
c P12Bc)− γ2MZ−1Mᵀ,

P12 = γ (AᵀP12Ac +Bᵀ
c P22Ac)− γ2MZ−1BᵀP12Ac, (4.2.22b)

P22 = Q2 + γAᵀ
cP22Ac − γ2Aᵀ

cP21BZ
−1BᵀP12Ac, (4.2.22c)

P13 = −CᵀQ1 + γ (AᵀP13Tr +Bᵀ
c P23Tr) (4.2.22d)

− γ2MZ−1BᵀP12F,

P23 = γAᵀ
cP23Tr − γ2Aᵀ

cP21BZ
−1BᵀP13Tr, (4.2.22e)

where Pij = P ᵀ
ji, as a consequence of the symmetry of P .

�

Proof:

Value function in (4.2.14) can be rewritten as

V (X[k]) = tr (PwQ1) + ξ{Xᵀ[k]Q̄X[k] + uᵀ[k]Ru[k] + γV (X[k + 1])}. (4.2.23)

On the other hand, since the value function is assumed to be quadratic in terms of the

augmented state vector,

V (X[k + 1]) = Xᵀ[k + 1]PX[k + 1] + g[k + 1], (4.2.24)

but from (4.2.13) we have

X[k + 1] =
[
xᵀ[k + 1] xᵀc [k + 1] r̄ᵀ[k + 1]

]ᵀ
. (4.2.25)

Then, by replacing (2.2.22), (4.2.8) and (4.2.17) into (4.2.25), we have

V (X[k]) = tr (PwQ1 + γPvP11) + ξ{γg[k + 1]

+ (Hᵀ + uᵀ)Z (H + u) +Xᵀ[k]P̄X[k]}, (4.2.26)

where Z is defined as in (4.2.21a), H is given by

H = −γZ−1 (Mᵀx[k] +BᵀP12Acxc[k] +BᵀP13Tr r̄[k]) , (4.2.27)

with M as in (4.2.21b), and P̄ is given by

P̄ =

 P̄11 P̄ ᵀ
21 P̄ ᵀ

31

P̄21 P̄22 P̄ ᵀ
32

P̄31 P̄32 P̄33

 , (4.2.28)

where each matrix P̄ij , an updated value of Pij is such that

P̄11 = CᵀQ1C + γ (AᵀP11A+Bᵀ
c P21A+AᵀP12Bc

+Bᵀ
c P22Bc)− γ2MZ−1Mᵀ, (4.2.29a)

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 41

P̄12 = (Aᵀ
cP21A+Aᵀ

cP22Bc)− γ2Aᵀ
cP21BZ

−1Mᵀ, (4.2.29b)

P̄22 = Q2 + γAᵀ
cP22Ac − γ2Aᵀ

cP21BZ
−1BᵀP12Ac, (4.2.29c)

P̄31 = −Q1C + γ (T ᵀ
r P31A+ T ᵀ

r P32Bc)

− γ2T ᵀ
r P31BZ

−1 (BᵀP11A+BᵀP12Bc) , (4.2.29d)

P̄32 = γT ᵀ
r P32Ac − γ2T ᵀ

r P31BZ
−1BᵀP12Ac, (4.2.29e)

P̄33 = Q1 + γT ᵀ
r P33Tr − γ2T ᵀ

r P31BZ
−1BᵀP13Tr. (4.2.29f)

Finally, for minimizing the expression in (4.2.26), it can be seen that the optimal control

law u[k] has to be chosen such that

u[k] = γZ−1 (Mᵀx[k] +BᵀP12Acxc[k] +BᵀP13Tr r̄[k]) (4.2.30)

so comparing terms in (4.2.16) and (4.2.30) yields (4.2.20).

In a similar form, by replacing (4.2.18) into (4.2.26), and comparing both sides of the

expression, it can be found

g[k] = γg[k + 1] + tr (PwQ1 + γPvP11) , (4.2.31)

so a little algebra yields (4.2.19).

���

Remark 4.2.1. The assumption that r̄[k] is generated by the model described in (4.2.17), is

valid for a large class of useful trajectories, such as a unit step signal, sinusoidal waveforms

and more.

Then, Algorithm 5 shows the policy evaluation and improvement steps for the l-th iter-

ation of PI.

It can be seen that Algorithm 5 can be implemented online, but all dynamics, including

the generator model for the exogenous reference signal, have to be known. Despite this fact,

expressions can be easily computed, and we can achieve a state feedback controller with its

own (stable) dynamics by just designing two parameters (Ac and Bc, since the rest depend

on these) in place of the classical standard case with just one parameter, which could lead

to a high gain for some processes.

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 42

Algorithm 5 Dynamic State Feedback Controller Design

1: (Policy Evaluation) Solve for each left-hand variable in (4.2.22), given the data from

previous iteration, e.g.,

P
(l)
11 = CᵀQ1C −

(
R+ γBᵀP

(l)
11 B

)
D(l−1)
c Dᵀ,(l−1)

c

+ γ
(
AᵀP

(l)
11 A+AᵀP

(l−1)
12 B(l−1)

c

+Bᵀ,(l−1)
c P

(l−1)
21 A+Bᵀ,(l−1)

c P
(l−1)
12 B(l−1)

c

)
,

...

P
(l)
23 = γAᵀ,(l−1)

c

(
P

(l)
23 Tr − P

(l−1)
21 BF (l−1)

)
2: (Policy Improvement) Update parameters Ac and Bc with this new data, such that

following augmented matrix has the smallest possible eigenvalues and:

λ̄

([
Ā

(l)
11 Ā

(l)
12

B
(l)
c A

(l)
c

])
< 1,

where

Ā
(l)
11 = A− γBZ−1,(l)

(
AᵀP

(l)
11 B +B(l)

c P
(l)
21 B

)
,

Ā
(l)
12 = −γBZ−1,(l)BᵀP

(l)
12 A

(l)
c ,

with

Z(l) =
(
R+ γBᵀP

(l)
11 B

)
. (4.2.33)

Then, the rest of the parameters are updated as

F (l) = γZ−1,(l)BᵀP
(l)
13 Tr,

C(l)
c = −γZ−1,(l)BᵀP

(l)
12 A

(l)
c ,

D(l)
c = −γZ−1,(l)

(
AᵀP

(l)
11 B +Bᵀ,(l)

c P
(l)
21 B

)
.

4.2.3 Stochastic LQT with unknown parameters

Consider the LQT Q-function given by

Q (X[k], u[k]) = XᵀQ̄X[k] + uᵀ[k]Ru[k] + tr (PwQ1) + γ (Xᵀ[k + 1]PX[k + 1] + g[k + 1]) ,

(4.2.34)

with Q̄ defined in (4.2.15). Then, this expression is equivalent to

Q (X[k], u[k]) =

[
X[k]

u[k]

]ᵀ
H

[
X[k]

u[k]

]
+ tr (PwQ1 + γPvP11) + γg[k + 1], (4.2.35)

4.2. CONTROLLER SYNTHESIS USING REINFORCEMENT LEARNING 43

with symmetric H given by

H =

[
Hxx Hxu

Hux Huu

]
, (4.2.36)

where

Huu = R+ γBᵀP11B, (4.2.37a)

Hxu = γ

 BᵀP11A+BᵀP12Bc
BᵀP12Ac
BᵀP13Tr

 , (4.2.37b)

and Hxx given by:

Hxx =

CᵀQ1C + γ

(
AᵀP11A + B

ᵀ
c P21A + AᵀP12Bc + B

ᵀ
c P22Bc

)
γ
(
AᵀP12 + B

ᵀ
c P22

)
Ac −CᵀQ1 + γ

(
AᵀP13 + B

ᵀ
c P23

)
Tr

γ
(
A

ᵀ
c P21A + A

ᵀ
c P22Bc

)
Q2 + γA

ᵀ
c P22Ac γA

ᵀ
c P23F

−Q1C + γ
(
BᵀP11A + BᵀP12Bc

)
γBᵀP12Ac Q1 + γBᵀP13Tr

 .
(4.2.38)

Based on (4.2.35), by finding the roots of its first derivative, it can be seen that the control

law in terms of H is given by

u[k] = −H−1
uuHuxX[k]. (4.2.39)

Note that the Q-function in (4.2.34) satisfies the Bellman equation

Q (X[k], u[k]) = Xᵀ[k]Q̄X[k] + uᵀ[k]Ru[k] + tr (PwQ1) + γQ (X[k + 1], u[k + 1]) . (4.2.40)

Then, let S[k] be

S[k] =

 1

X[k]

u[k]

 , (4.2.41)

so (4.2.35) is equivalent to

Q (X[k], u[k]) = Sᵀ[k]H̄S[k], (4.2.42)

with H̄ given by

H̄ =

 tr (PwQ1 + γPvP11) + γg[k + 1] 0 0

0 Hxx Hxu

0 Hux Huu

 , (4.2.43)

so now (4.2.40) becomes

Sᵀ[k]H̄S[k] = Xᵀ[k]Q̄X[k] + uᵀ[k]Ru[k] + γSᵀ[k + 1]H̄S[k + 1]. (4.2.44)

Finally, (4.2.44) leads to Algorithm 6,which would match the same terms in the Algorithm

shown in [22], if we change our stochastic setup for a deterministic one, and not consider

the internal state of the controller.

4.3. SIMULATION RESULTS 44

Algorithm 6 Controller synthesis with unknown dynamics

1: (Policy Evaluation) Based on observations of S[k], S[k + 1] and(
Xᵀ[k]Q̄X[k] + uᵀ,(l)[k]Ru(l)[k]

)
for the l-th iteration, use Least Squares to find

H̄,

Sᵀ[k]H̄(l+1)S[k] = Xᵀ[k]Q̄X[k] + uᵀ,(l)[k]Ru(l)[k] + γSᵀ[k+ 1]H̄(l+1)S[k+ 1]. (4.2.45)

2: (Policy Improvement) Update the control law

u(l+1)[k] = −
(
H−1
uu

)(l+1)
H(l+1)
ux X[k]. (4.2.46)

4.3 Simulation results

Consider the linear system given by

x[k + 1] =

[
0.5 0

0.7 1.2

]
x[k] +

[
0

0.1

]
u[k] + v[k], (4.3.1a)

y[k] =
[

1 1
]
x[k] + w[k], (4.3.1b)

where v[k] and w[k] are the process and measurement noise respectively, with zero-mean

and unitary variance.

Let the generator model Tr for the reference signal vary with time, set arbitrarily to

Tr[k] =

{
0 k < 60

10 k ≥ 60
(4.3.2)

and r[0] = 1. Also, penalizing weights for the performance index were set to Q1 = 5, Q2 = 5

and R = 1, and the discount factor γ = 0.8.

Figure 4.1 shows the evolution of the generated control signal during the learning process,

with u1 obtained from Algorithm 5 and u2 obtained from Algorithm 6, where the prior leads

to parameters

F = 1.3667 Ac = 0.4 Bc =
[

1 −1.52
]

(4.3.3a)

Cc = −0.5 Dc =
[

0.3 2.1
]
. (4.3.3b)

Remark 4.1. In Algorithm 6, note that 25 data samples were collected to perform least

squares in each iteration, since (nx + nxc + nu + ny) · (nx + nxc + nu + ny + 1) /2, data tu-

ples or more are needed, i.e., at least 15 samples for this particular simulation experiment. �

If we consider that S[k] and S[k+1] are available as observations (and as a consequence,

x, xc, u are also available as observations at time k and k + 1), the least squares problem

can be formulated as the classical approach for linear regression:

∆θ = b, (4.3.4)

4.4. SUMMARY 45

where ∆ is a matrix with coefficients, θ is the parameters vector desired to find, and b is

a vector with solutions of the linear system, so b = Xᵀ[k]Q̄X[k] + uᵀ[k]Ru[k], θ contains

a bias element and parameters Hxx, Hxu, Hux, Huu, and ∆ is the matrix resulting from

decomposition of Sᵀ[k]H̄S[k]− γSᵀ[k + 1]H̄S[k + 1].

Then, Huu and Hux learned, which construct the control law in (4.2.39) are,

Huu = 341.9354, (4.3.5a)

Hux =
[

101.134 704.594 −173.186 −450.291
]
, (4.3.5b)

leading to

u[k] =
[
−0.2957 −2.06

]
x[k] + 0.5064xc[k] + 1.3169r̄[k], (4.3.6)

which is similar to the final parameters found by Algorithm 5.

These parameters lead to closed loop eigenvalues given by λ ∈ {0.5, 0.59, 0.8}, leading

to a stabilizing controller as depicted in Remark 3.3.

It can be seen in Figure 4.1, that Algorithm 5 and 6 achieve the same performance when

the learning process is finished, but the latter has a slower convergence rate as expected,

since adding knowledge represents an advantage, but it comes with a very high cost if the

process is too complex for obtaining an accurate model.

0 50 100 150 200
−10

0

10

20

30

40

50

60

70

k

A
m

p
lit

u
d

e

u1[k]

u2[k]

Figure 4.1: Control signal during learning process

4.4 Summary

Two PI algorithms were presented, one for the case when full knowledge of the model of

the process to be controlled is assumed to be available, and the other one when there is no

knowledge at all. The prior is specially useful for not having to tune by hand four parameters

at a time, when the controller is allowed to have its own internal dynamics.

Chapter 5

EXPERIMENTAL RESULTS ON

THE FURUTA PENDULUM

The rotary inverted pendulum is one of the most popular control experiments within the

underactuated mechanical systems area, having a nonlinear model but allowing a linear

approximation around the upper unstable position, broadening the extent of possible con-

troller classes to the well-known and extensively studied linear realm. This chapter presents

a switched strategy which involves a energy-based nonlinear controller and a linear quadratic

regulator formulation for the swing-up and stabilization task respectively. Experimental re-

sults will be shown on a physical prototype designed and available for use at the institution

(Electronics Dept. at Universidad Técnica Federico Santa Maŕıa). Then, an adaptive ap-

proach which makes use of a simplified procedure from previous chapter will be shown and

implemented over simulation, evaluating performance of resulting controller on the labora-

tory prototype.

5.1 Introduction

Underactuated plants are appealing due to their interesting spectrum applications such as

aerospace systems or robotic plattforms [10,28,37], and the efforts of the controller may be

diminished if it takes advantages of the structural dynamics often involved, instead of the

classical feedback scheme where the controller aims to nullify the system to be controlled.

Control community have done a great variety of work related to underactuated systems

and introduced some benchmark problems like the cart-pole [48], where the control problem

requires not only to stabilize the pendulum in the upper unstable position, also displacement

of the cart has to be considered, increasing design complexity. There are other similar

underactuated mechanical systems with model of reduced order, allowing to capture the

essence of a problem without introducing all the complexity frequently involved on real

world applications. An example of a trivially underactuated system, with two degrees of

freedom and one actuator, is the rotary inverted pendulum (RIP) also known as Furuta

pendulum [4].

Different control techniques have been implemented on similar problems, such as [16]

which applies different evolutionary algorithms in order to adjust parameters of a PID

controller, including genetic algorithms, particle swarm optimization and ant colony opti-

46

5.2. ROTARY INVERTED PENDULUM 47

mization which simulates behavior of ants and their ability to find the shortest path from

their nest to a food source [14]. Although these methods may provide sufficient performance

for the obtained controller, there are no guarantees of stability nor convergence speed in the

intermediate process.

Other model-based control approaches on the Furuta pendulum have been also reported

in literature, like [6] where the design and implementation of an adaptive sliding mode

controller is discussed, along with other sliding mode variations in order to compare their

performance within that class of controllers. Although nonlinear control does not deal with

model approximations, linear control is a powerful approach which can provide a more

in-depth stability analysis due to the extensively studied linear theory.

On the linear class of controllers, work on [31] a linear controller based on a linear ob-

server is obtained under an active disturbance rejection control scheme. A similar approach

to the switched control strategy to be used on the RIP can be found in [29], where an

energy-based nonlinear controller is designed for the swing-up task of the flywheel inverted

pendulum, and also a locally stabilizing controller is obtained by means of tuning the ap-

propiate parameters of a PID controller in order to take the pendulum from its stable rest

position to the upward unstable vertical line.

The remainder of this document is organized as follows. Section 5.2 presents the RIP

nonlinear model along with its linear approximation around the unstable equilibrium point,

and its validation using measured data from the physical prototype. Section 5.3 shows

the energy-based nonlinear controller for the swing-up task, obtained from the Lyapunov

global stability theory. Then, Section 5.4 formulates the LQR problem which leads to

a state feedback control law in order to stabilize the pendulum in the upward position,

while Section 5.5 presents the switched approach of both presented approaches. Finally,

Section 5.6 presents a simplified procedure from the previous chapter for implementation

on a simulated version of this task, transferring obtained parameters to physical prototype,

and Section 5.7 presents simulation results with physical prototype parameters in order to

implement the adaptive approach.

5.2 Rotary inverted pendulum

Consider a second order and controllable dynamical system given by:

q̈ = f(q, q̇, u, t), (5.2.1)

where u corresponds to the control vector, q and q̇ are the positions and velocities vector

respectively, and t denotes the possible influence of time over the acceleration vector q̈. For

the case that concerns this study, where dynamics are affine on the commanded torque, this

expression can be rewritten as:

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u. (5.2.2)

Then, in formal terms a control system described by (5.2.1) is called underactuated in

the configuration (q, q̇, t) if it is not possible to drive an instantaneous acceleration on any

arbitrary direction, i.e.:

rank(f2(q, q̇, t)) < dim(q). (5.2.3)

5.2. ROTARY INVERTED PENDULUM 48

The rotary inverted pendulum (RIP), also known as Furuta pendulum is an example of an

underactuated system, and as illustrated in Figure 5.1, it consists of a controlled arm in the

horizontal plane rotating around a central axis, and a pendulum linked to one of the ends of

this arm, rotating over the vertical plane. This plant allows us to study nonlinear dynamics

of simplified models which are also possible to construct physically, building mechatronic

platforms with enhance reproducibility features.

Figure 5.1: Side and top view of Furuta pendulum

According to Figure 5.1, there is a DC motor responsible for controlling the arm position

measured by θ0 through the armature voltage, and its main parameters are the armature

resistance and inductance, Ra and La respectively.

5.2.1 Model formulation

Define {lp,mp, Ip, θ1}, where lp stands for the length from the rotating axis of the pendulum

to its center of mass, mp denotes the mass of the pendulum with its moment of inertia Ip
and its rotation angle θ1. Then, r corresponds to the arm radius which has a moment of

inertia Ia, introducing a counterweight of mass mc which takes the center of the mass of

the rotating arm at height h. Consider the rotation angle of the arm to be given by θ0.

A detailed description of parameters involved in the model along with its values for the

physical prototype is shown in Table 5.1.

The Lagrangian is then given by (5.2.4), where Ek and Ep denote the kinetic and po-

tential energy respectively, while q is the generalized coordinates vector, q =
[
θ0 θ1

]ᵀ
.

L(q, q̇) = Ek(q, q̇)− Ep(q, q̇) (5.2.4)

5.2. ROTARY INVERTED PENDULUM 49

Kinetic energy for the pendulum is given by the sum of traslational and rotational

components, while kinetic energy for the arm is given by rotation and tangential kinetic

energy:

Ek =
1

2
Ĵ0θ̇

2
0 +

1

2
Ĵ1θ̇

2
1 +

1

2
mpl

2
pθ̇

2
0sin

2(θ1)−mprlpθ̇0θ̇1cos(θ1), (5.2.5)

where Ĵ0 and Ĵ1 are given by

Ĵ0 = Ia + r2(mp +mc), (5.2.6a)

Ĵ1 = Ip +mpl
2
p, (5.2.6b)

while potential energy is given in terms of the pendulum and counterweight masses:

Ep = mpglpcos(θ1) +mcgh. (5.2.7)

Symbol Description Value

mp Pendulum mass 0.1 kg

mc Counterweight mass 0.01 kg

Ip Pendulum inertial moment 5.1 · 10−4 kg m2

Ia Arm inertial moment 3.1 · 10−3 kg m2

r Arm radius 0.13 m

lp Pendulum mass center 0.125 m

h Arm center of mass height 0.055 m

C0 Arm friction coefficient 10−4 N m s

C1 Pendulum friction coefficient 10−4 N m s

Ra Armature resistor 8 Ω

La Motor inductance 10 mH

Im Motor inertia 1.9 · 10−6 kg m2

Mf Motor mutual inductance 0.0214 N m/A

Kg Gear reduction coefficient 59927

Keg External gear reduction coefficient 16

g Gravitational acceleration 9.806 m/s2

Table 5.1: RIP parameters

Then, according to the Euler-Lagrange equation:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi, i = θ0, θ1 (5.2.8)

with τi being the moments applied to each coordinate, leading to

M1(θ1)q̈ +M2(θ1)q̇ +M3(θ1) = T, (5.2.9)

where M1, M2 and M3 corresponds to inertia matrix, centripetal and Coriolis torque ma-

trices respectively and T is the torque vector:

M1(θ1) =

[
Ĵ0 +mpl

2
psin

2(θ1) −mprlpcos(θ1)

−mprlpcos(θ1) Ĵ1

]
, (5.2.10a)

5.2. ROTARY INVERTED PENDULUM 50

M2(θ1) =

[
mpl

2
pθ̇1sin(2θ1) + C0 mprlpθ̇1sin(θ1)

− 1
2mpl

2
pθ̇0sin(2θ1) C1

]
, (5.2.10b)

M3(θ1) =

[
0

−mpglpsin(θ1)

]
, (5.2.10c)

T =

[
τl
0

]
, (5.2.10d)

with C0 and C1 as the friction coefficients of the arm and pendulum respectively, with

values given in Table 5.1. From (5.2.10), the reader can note that the motor actuates just

on the arm and matrices model the movement transfer to the pendulum. This load torque,

τl is related to the motor dynamics which is related with electrical torque, τe, and electrical

angular velocity, ωe, given by

V (t) = Rai(t) + La
d

dt
i(t) +Mfωe, (5.2.11a)

τe = MfKgi(t), (5.2.11b)

τe − τl = Im
d

dt
ωe, (5.2.11c)

with parameters as described in Table 5.1, and V (t),i(t) the applied voltage and current to

the motor at time t, respectively.

Finally, applied torque and angular velocity is related with its corresponding electrical

variables as follows:

ω = K−1
g ωe, (5.2.12a)

τ = Kgτe. (5.2.12b)

Then, the RIP model including motor dynamics is given by:

q̈ = M̄1(θ1)−1
(
T̄ − M̄2(θ1)q̇ −M3(θ1)

)
, (5.2.13)

where new matrices are described by:

M̄1(θ1) =

[
Ĵ0 +mpl

2
psin

2(θ1) +K2
gIm −mprlpcos(θ1)

−mprlpcos(θ1) Ĵ1

]
, (5.2.14a)

M̄2(θ1) =

[
mplpθ̇1sin(2θ1) + C0 mprlpθ̇1sin(θ1)

− 1
2mplpθ̇0sin(2θ1) C1

]
, (5.2.14b)

T̄ =

[
MfKgi

0

]
. (5.2.14c)

Define the state vector x =
[
θ0 θ̇0 θ1 θ̇1 i

]ᵀ
. Then, in order to obtain a linearized

model around the equilibrium point x =
[

0 0 0 0 0
]
, recall (5.2.11a) and solve for

the derivative of current i:

d

dt
i(t) =

1

La
V (t)− Ra

La
i(t)− Mf

La
ωe. (5.2.15)

5.2. ROTARY INVERTED PENDULUM 51

From (5.2.12a) and noting that this prototype has an external gear reduction system

which relates the arm angular velocity with its corresponding variable obtained from the

motor described by

θ̇0 = K−1
eg ω, (5.2.16)

expression (5.2.15) can be rewritten as

d

dt
i(t) =

1

La
V (t)− Ra

La
i(t)− Mf

LaKg
θ̇0. (5.2.17)

Then, the following linear model is obtained

ẋ(t) = Ax(t) +Bu(t), (5.2.18)

where x is the previously defined state vector, u corresponds to the control signal (applied

voltage) and matrices A and B given by

A = α ·

0 1
α 0 0 0

0 −Ĵ1C0 m2
pl

2
pgr mprlpC1 MfKgĴ0Ĵ1

0 0 0 1
α 0

0 mprlpC0 Ĵ0mpglp −Ĵ0C1 KgMfmprlp

0 − Mf

LaKgα
0 0 − Ra

Laα

, (5.2.19a)

B =
[

0 0 0 0 1
La

]ᵀ
, (5.2.19b)

with α given by the following expression:

α =
1

Ĵ0Ĵ1 − (mprlp)2
. (5.2.20)

5.2.2 Experimental setup

• The signal acquisition was made with a National Instruments board specially designed

for analog and discrete time I/O acquiring tasks. In particular the model used corre-

sponds to CB-68LPR whose connections diagram is shown in the Appendix.

• The experimental results were obtained in an Intel Core Duo 2.94GHz with 4GB RAM

running LabView 2014, first setting properly the input and output tasks on National

Instruments - Measurement & Automation Explorer, as depicted also in the Appendix.

• As previously described, two encoders were used on this prototype (one for measur-

ing pendulum position, and the other one used for measuring arm position). These

encoders corresponds to the model AMT102-V.

• Sampling period was set to 2 miliseconds.

5.2. ROTARY INVERTED PENDULUM 52

5.2.3 Model validation

Considering a region of 15 degrees around the down stable rest position, θ1 = π, the dynamic

equation for the pendulum can be approximated as linear and can be written as:

Ĵ1θ̈1 + C1θ̇1 +mplpgθ1 = 0, (5.2.21)

or in its general form:

θ̈1 + 2ζωnθ̇1 + ω2
nθ1 = 0, (5.2.22)

with ωn as the natural oscillation frequency and ζ as the damping coefficient. From (5.2.21)

and (5.2.22) we have:

ωn = 7.69, (5.2.23a)

ζ = 3.13 · 10−3, (5.2.23b)

while experimentally we can estimate these parameters from a free response of the system

with:

ζ̂ =
1√

1 +
(

π
ln2(M/N)

) , (5.2.24a)

ω̂n =
2π

Ts

√
1− ζ̂2

, (5.2.24b)

where M corresponds to the ratio from the first two consecutive peaks, N is the stationary

value and Ts stands for the semiperiod of the maximum oscillation. Then, from Figure 5.2

we obtain :

ω̂n = 9.2, (5.2.25a)

ζ̂ = 0.00585. (5.2.25b)

time [s]
0 2 4 6 8 10

θ
1
[d
eg
]

155

160

165

170

175

180

185

190

195

200

205
pendulum free response

Figure 5.2: Pendulum damped oscillation

5.3. SWING-UP CONTROLLER 53

5.3 Swing-up controller

Model from (5.2.13) can be simplified if we do not consider centripetal and Coriolis torque,

that is inserting zero values replacing current entries of matrices M̄2(θ1) and M3(θ1), ob-

taining:

Ĵ1θ̈1 −mpglpsin(θ1) = mprθ̈0cos(θ1). (5.3.1)

Then, by noting that angular acceleration θ0 is directly controlled from the actuator, the

total unforced energy for the pendulum would be given by:

Eu =
1

2
Ĵ1θ̇

2
1 +mpglpcos(θ1) +mcgh. (5.3.2)

Given that the objective of the switched control strategy is to stabilize the pendulum at the

upward position, that is when θ1 = θ̇1 = 0, so desired energy at the target position is given

by:

Ed = mpglp +mcgh, (5.3.3)

implying that unforced normalized energy with respect to Ed is as follows:

Eun = Eu − Ed,

=
1

2
Ĵ1θ̇

2
1 +mpglp (cos(θ1)− 1) , (5.3.4)

leading to Eun = 0 at the equilibrium and Eun = −2mpglp at the rest (down) position.

Figure 5.3 shows the evolution of unforced normalized energy over time when the pendulum

is taken from the upward to the rest position with no control signal being applied on the

system.

time [s]
0 5 10 15 20

θ
1
[d
eg
]

0

100

200

300

time [s]
0 5 10 15 20

en
er
gy

[J
]

-0.2

-0.1

0

X: 18

Y: -0.245

Figure 5.3: Unforced normalized energy evolution

In order to obtain a nonlinear controller that minimizes (5.3.4), consider the following

positive definite Lyapunov function:

V =
1

2
E2
un. (5.3.5)

5.3. SWING-UP CONTROLLER 54

Then, a controller minimizing (5.3.4), which is taking Eun → 0 asymptotically as t → ∞
from any given initial condition, has to be chosen such that V̇ < 0. This derivative is given

by:

V̇ = (Eu − Ed) Ėu, (5.3.6)

where using (5.3.1) and (5.3.2) the derivative of unforced energy is obtained:

Ėu = mprθ̈0cos(θ1)θ̇1. (5.3.7)

Therefore, proposed control law includes a positive swing-up gain,λsu whose value is chosen

such that (5.3.6) is never positive semi definite:

θ̈0 = −λsu (Eu − Ed) cos(θ1)θ̇1. (5.3.8)

Given that controlling the angular velocity of the motor implies controlling its current,

transfer function from current to voltage is simplified by means of neglecting armature

inductance, so the relation between angular acceleration and applied voltage becomes:

V (t) = Rai(t) +Mfωe. (5.3.9)

On the other hand, considering (5.2.11b) and τl ≈ Ĵ0θ̈0 in (5.2.11c):

KgMf i(t) + Ĵ0λsu(Eu − Ed)cos(θ1)θ̇1 = Im
d

dt
ωe, (5.3.10)

so by solving (5.3.9) in terms of the current and replacing this, and (5.2.12a) with (5.2.16)

into (5.3.10), the non-linear control law expressed in terms of the applied voltage would be

given by

V (t) = MfKgKeg θ̇0 − λ̄su(Eu − Ed)cos(θ1)θ̇1, (5.3.11)

with

λ̄su =
Ra(Ĵ0 + ImKgKeg)

KgMf
λsu. (5.3.12)

Figure 5.4 shows the pendulum position and the corresponding control signal being

applied to the motor while performing the swing-up movement.

time [s]
0 1 2 3 4 5

θ
1
[d
eg
]

0

100

200

300

400

time [s]
0 1 2 3 4 5

ac
tu
at
io
n
[v
ol
ts
]

-10

0

10

Figure 5.4: Pendulum position and actuation on the swing-up task

5.4. LINEAR QUADRATIC REGULATOR 55

5.4 Linear quadratic regulator

Once the pendulum position has been taken from the down rest equilibrium to the upward

unstable position, the next step is to keep the pendulum at zero degrees with the minimum

possible deviation, so a stabilizing controller has to be obtained.

Considering a linear and time-invariant system described in state space variables just

like (5.2.18), the cost function is given by:

J =

∫ ∞
0

(xᵀ(t)Qx(t) + uᵀ(t)Ru(t)) dt, (5.4.1)

where Q and R are weighting matrices positive definite and positive semi-definite respec-

tively. Then, state-feedback control law which minimizes (5.4.1) is given by:

u(t) = −Lx(t), (5.4.2)

where L is such that

L = R−1BᵀP, (5.4.3)

and P stands for the solution of the algebraic Ricatti equation (ARE):

AᵀP + PA− PBR−1BᵀP +Q = 0. (5.4.4)

Matrices Q and R have to be designed by means of giving more weight to states that are

more relevant than others for the particular experiment. In this case, priority is given to

pendulum position, θ1, while other important variables correspond to arm and pendulum

velocities, so experiment proposal is given by:

Q =

1 0 0 0 0

0 10 0 0 0

0 0 100 0 0

0 0 0 10 0

0 0 0 0 1

 , (5.4.5a)

R = 10, (5.4.5b)

where penalizing actuation factor, R, is chosen such that DC motor does not perform any

sudden behavior changes desestabilizing pendulum position.

Then, solving (5.4.4) with parameters described in (5.2.19) and replacing into (5.4.3)

yields:

L =
[
−0.31 −5.26 70.74 8.92 0.17

]
. (5.4.6)

Figure 5.5 shows the pendulum position control once it has reached the stabilizible region

starting from a swing-up behavior.

Given that this full state-feedback implementation require velocity sensors for acquiring

the appropiate measurement, a linear observer, O, as a soft-sensor is used, whose (continu-

ous) transfer function is given by

O(s) =
50s

s+ 50
. (5.4.7)

5.5. SWITCHED CONTROL STRATEGY 56

time [secs]

0 1 2 3 4 5 6
p

e
n
d

u
lu

m
 p

o
s
it
io

n
 [

d
e

g
]

0

50

100

150

200

250

300

350

Swing-up and stabilization

Figure 5.5: Pendulum position stabilization

5.5 Switched control strategy

The switched control strategy consists in combining the energy-based swing-up task de-

scribed in this document, and the state-feedback controller obtained by means of solving

the linear quadratic regulator problem discussed in the previous section.

Switching criteria is based on the stabilizable region of the pendulum, since a linear

approximation of the model can be assumed when the pendulum position is less than 15

degrees, but also velocity (estimated by software, since there are no direct measurements of

velocities) has to be considered, so LQR controller will perform if:

• pendulum position is less than 15 degrees,

• pendulum velocity is less than 30 rad/sec,

otherwise swing-up controller will be used.

In order to be able to control both degrees of freedom of this laboratory underactuated

plant, more importance to the arm position (actuated link) has to be given, so Q is modified

accordingly:

Q =

100 0 0 0 0

0 10 0 0 0

0 0 100 0 0

0 0 0 10 0

0 0 0 0 1

 , (5.5.1)

while value of R stays the same, R = 10, leading to solution of the ARE:

P =

.0601 .0153 −.1718 −.0216 −.0002

· .0141 −.175 −.0219 −.0003

· · 2.2155 .2746 .004

· · · .0344 .0005

· · · · 0

 · 106, (5.5.2)

where · is used to denote symmetry. This matrix allows us to obtain the state-feedback

5.6. DYNAMIC STATE-FEEDBACK CONTROLLER 57

controller described by

L =
[
−3.1 −6.07 80.02 10.08 0.19

]
. (5.5.3)

Then, Figure 5.6 shows the signals of interest in the switched control strategy, combining

both the energy-based and lqr controller for swing-up and stabilization task respectively.

The first plot shows the pendulum position, θ1, while the following plot shows tracking of

reference r for the actuated link, θ0. Figure 5.6 also shows the control signal, u, which

corresponds to the applied voltage over DC motor.

0 5 10 15 20 25 30 35 40
0

50

100
θ0

r

0 5 10 15 20 25 30 35 40
0

200

400
θ1

time [secs]

0 5 10 15 20 25 30 35 40
-20

0

20
u

Figure 5.6: Pendulum and arm position control

Remark 5.1. Oscillations in the actuaction signal are caused by practical issues such as

the zero position, so if the vertical stable pendulum position is not exactly located at 0

degrees and actuation is higher than desired, the pendulum will always be struggling against

gravity. Nevertheless, as will be shown in the following Section, when dynamic state-feedback

controller is used, this problem is solved since its actuation magnitud is lower.

5.6 Dynamic state-feedback controller

According to Chapter 3, Figure 5.7 shows the dynamic state-feedback controller performance

over the Furuta pendulum. Recall that this controller is given by

xc[k + 1] = Acxc[k] +Bcx[k], (5.6.1a)

u[k] = r[k]− (Ccxc[k] +Dcx[k]) , (5.6.1b)

where r[k] is a pre-filtered reference obtained from r̄[k], so matrices were set to:

Ac = 0.4,

Bc =
[

1 2 1 2 0
]

, Cc = −0.5,

5.6. DYNAMIC STATE-FEEDBACK CONTROLLER 58

Dc =
[
−3 −6 80 10 0

]
,

so pre-filter F is given by F = 3.83.

k [msec]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
n
d
u
lu

m
 p

o
s
it
io

n

0

50

100

150

200

250

300

Swing-up and (dynamic) stabilization

Figure 5.7: Pendulum stabilization under dynamic state-feedback

Then, applying the same switching criteria as in the previous Section, switched control

strategy using this dynamic state-feedback controller is shown in Figure 5.8, with closed-loop

eigenvalues in λ ∈ {0.31, 0.31, 0.98, 0.99, 0.99, 0.99}, noting that closed-loop eigenvalues of

the static state-feedback architecture are λ ∈ {0.21, 0.93, 0.98, 0.98, 0.99}, so despite intro-

ducing additional dynamics the slowest mode is on the same magnitude in both architectures,

but control signal has lower amplitude in the dynamic approach.

×10 4

0 0.5 1 1.5 2 2.5
0

200

400
θ1

×10 4

0 0.5 1 1.5 2 2.5
-100

0

100
θ0

r̄

k [msec]
×10 4

0 0.5 1 1.5 2 2.5
-20

0

20

u

Figure 5.8: Pendulum and arm position control under dynamic state-feedback

5.7. ADAPTIVE APPROACH 59

5.7 Adaptive approach

In order to compare directly performance of the adaptive and the classical approach on a

given task (pendulum position stabilization in this case), state-feedback controller will be

assumed to have no internal dynamics, i.e., the analytically and the learned controllers will

be described by

u[k] = −Lx[k], (5.7.1)

at time k, so the difference will be in the approach for obtaining this controller, L.

Recall (4.2.40), so in this case Q-function is given by

Q(xk, uk) = xᵀkQxk + uᵀkRuk + (Axk +Buk)
ᵀ
S (Axk +Buk) , (5.7.2)

with γ = 1, so the action-value function becomes undiscounted, and S being the algebraic

riccati equation solution, so (5.7.2) can be written as

Q(xk, uk) =

[
xk
uk

]ᵀ [
AᵀSA+Q BᵀSA

AᵀSB BᵀSB +R

] [
xk
uk

]
, (5.7.3)

so control law is given by

u[k] = S−1
uu Suxx[k], (5.7.4)

with Suu = (BᵀSB +R), and Sux = BᵀSA, so knowledge of the dynamics system would be

required in order to perform policy improvement on policy iteration or value iteration algo-

rithms. On the other hand, Q-function (and therefore kernel matrix S) can be determined

online in real time without knowing system dynamics (A,B) by just using data measured

along the system trajectories.

Figure 5.9 shows performance of the pendulum position control over this adaptive ap-

proach, where the learned controller, L2 is given by

L2 =
[

0 −.17 2.24 .28 .005
]
· 103, (5.7.5)

and the state-feedback controller obtained by means of solving the algebraic riccati equation

is described by

L1 =
[
−.31 −5.26 70.74 8.92 .17

]
, (5.7.6)

with closed-loop poles given by

eig (A−B ∗ L1) = {0.2140, 0.9394, 0.9852, 0.9852, 0.9998}, (5.7.7a)

eig (A−B ∗ L2) = {0.0069, 0.2147, 0.9446, 0.9845, 0.9999}, (5.7.7b)

noting that the adaptive controller has closed-loop modes that disappear faster than the

controller obtained then under the classical approach, and since the task is limited to sta-

bilize the pendulum in the upward position, as the intuition suggests the arm position does

not play any decisive role.

Solution of solving analytically the appropiate algebraic riccati equation:

P =

.0046 .0013 −.0152 −.0019 0

· .0103 −.1321 −.0165 −.0003

· · 1.7318 .2139 .0036

· · · .0268 .0005

· · · · 0

 · 106, (5.7.8)

5.8. SUMMARY 60

time [secs]
0 0.5 1 1.5 2

am
p
li
tu
d
e
[d
eg
]

-300

-200

-100

0

100

200

300

400
adaptive pendulum position control

θ1

θ̂1

Figure 5.9: Pendulum position control

while the corresponding learned matrix from applying Algorithm 5 is given by

P =

0 .0001 −.0014 −.0002 0

0 −.0999 1.2757 .1634 .0028

−.0001 .3407 −4.3501 −.5572 −.0097

0 .1281 −1.6356 −.2095 −.0037

0 0 −.0003 0 0

 · 1010. (5.7.9)

5.8 Summary

A classic well-known underactuated system, the rotary inverted pendulum (also known as

Furuta pendulum) has been studied and a linear model has been obtained. The switched

strategy presented consists of a energy-based swing up task, and stabilization in the upward

position due to a linear controller obtained by means of posing the stabilization problem as

a linear quadratic regulator design, which also has proved to be of interest when controlling

both degrees of freedom of the underactuated plant. Also, pendulum position control was

implemented in an adaptive approach under a simulated environment, while implementation

on the physical prototype remains as future work.

Chapter 6

CONCLUSIONS

In this thesis, the Linear Quadratic Tracking (LQT) problem was tackled, namely, the

control problem where the output has to keep track of the trajectory of some exogenous

reference signal assuming a linear model and a quadratic cost function. To this end, we used

a (linear) dynamic state feedback controller, whose parameters were chosen by applying

reinforcement learning techniques, proving to be specially useful when the model of the

plant to be controlled is unknown or inaccurate, but still useful when dynamics are given,

since hand-tuning of controller parameters could represent a time consuming task due to

its number of degrees of freedom and its constraints. Simulation results showed that the

proposed controller scheme performs the same as the classical one in terms of the tracking

error, but this is achieved at a lower effort in terms of the control signal, at the cost of tuning

more parameters. These simulation results were implemented on an arbitrary plant for both

cases: state-feedback over the true state, and a feedback loop based on state estimations

from a Kalman filter.

Later, two policy iteration algorithms were presented, one for the case when full knowl-

edge of the model of the process to be controlled is assumed to be available, and the other

one when there is no knowledge at all. Control problem was formulated as a Markovian

Decision Process (MDP) and then used in an adaptive control approach using reinforcement

learning, which is often interesting due to its practical applications, since it does not require

complete knowledge of system dynamics. The case when knowledge of the model is assumed

to be available is still useful for not having to tune by hand many parameters at a time,

when the controller is allowed to have its own internal dynamics.

Then, a well-known underactuated system, the rotary inverted pendulum (also known

as Furuta pendulum) was studied and a linear model was obtained. The switched strategy

presented consists of a energy-based swing up task, and stabilization in the upward position

due to a linear controller obtained by means of posing the stabilization problem as a linear

quadratic regulator (LQR) design, which also has proved to be of interest when controlling

both degrees of freedom of the underactuated plant. Also, pendulum position control was

implemented in an adaptive approach under a simulated environment, while implementation

on the physical prototype remains as future work.

Also, future work remains on the extension of these techniques to other underactuated

systems, such as robotic manipulators or legged platforms since their dynamics are similar

to a system of pendulum with several coupled links, representing also a platform rich enough

in terms of dynamics complexity due to non-linearities.

61

Appendix A

APPENDIX

A.1 Useful matrix properties

This section will review some of the more important properties of matrices, which have been

proved to be useful for derivations along this thesis.

Lemma A.1 (Determinant of a block matrix).

Consider a block matrix A given by

A =

[
A11 A12

A21 A22

]
, (A.1.1)

where Aij denotes the ij-th block. Then, det(A) can be expressed as by the use of

C1 = A11 −A12A
−1
22 A21, (A.1.2)

C2 = A22 −A21A
−1
11 A12, (A.1.3)

as

det

([
A11 A12

A21 A22

])
= det(A22) · det(C1), (A.1.4)

= det(A11) · det(C2), (A.1.5)

where either A11 or A22 has to be invertible.

�

Proof:

It is very straightforward that for every triangular block matrix, its determinant is given

by the multiplication of the determinant of the blocks on the diagonal. Although A is not

triangular, one could apply LU factorization, which turns A into

A =

[
A11 0

A21 I

]
·

[
I A−1

11 A12

0 A22 −A21A
−1
11 A12

]
(A.1.6)

=

[
I A12

0 A22

]
·

[
A11 −A12A

−1
22 A21 0

A−1
22 A21 I

]
(A.1.7)

62

A.2. STATE SPACE DISCRETIZATION 63

Then, (A.1.6) and (A.1.7) yields (A.1.4) and (A.1.5) when A11 or A22 is invertible

respectively.

��

Lemma A.2 (Eigenvalues of two matrices product).

Consider a matrix A and B, such that their n eigenvalues are given by

eig(A) : λA,1 ≥ λA,2 ≥ ... ≥ λA,n, (A.1.8a)

eig(B) : λB,1 ≥ λB,2 ≥ ... ≥ λB,n. (A.1.8b)

Then, an upper bound for the k-th eigenvalue of the matrix product AB, i.e., λAB,k, is given

by

λAB,k ≤ min
i+j=k+1

λA,i · λB,j (A.1.9)

�

Proof: Let T be an operator of rank

rank(T) ≤ i− 1, (A.1.10)

such that λA,i = ‖A− T‖. Similarly, let S be an operator of rank

rank(S) ≤ j − 1, (A.1.11)

such that λB,j = ‖B − S‖.
Given that

‖(A− T) · (B − S)‖ ≤ λA,i · λB,j , (A.1.12)

it remains to estimate the rank of (A− T) · (B − S)−AB. By writing,

(A− T) · (B − S)−AB = −T (B − S)−AS, (A.1.13)

we see that its rank is at most

j − 1 + i− 1 = k − 1. (A.1.14)

��

A.2 State space discretization

When we describe the dynamics of a particular system by analyzing physical laws that relate

its variables of interest, we often find derivatives, given that these physical laws often yield

a continous time model, which in state space form corresponds to

dx

dt
= Ax(t) +Bu(t), (A.2.1a)

y(t) = Cx(t). (A.2.1b)

Then, a fundamental problem is how to describe a continous-time system connected to a

computer via Analog-to-Discrete and Discrete-to-Analog converters.

A.3. HARDWARE SETUP 64

Definition A.1 (Zero-Order-Hold discretization, see [3]).

Assume the Discrete-to-Analog converter is constructed such that it holds the analog signal

constant until a new conversion is commanded, and h denotes the sampling time, i.e. the

time elapsed between these conversions.

Then, the continous-time system on (A.2.1) is sampled into

x[kh+ h] = Adx[kh] +Bdu[kh], (A.2.2a)

y[kh] = Cx[kh], (A.2.2b)

with kh ≤ t < kh+ h, and where the relation between Ad, Bd and A, B is given by

Ad = eAh (A.2.3)

Bd =

∫ h

0

eAsdsB (A.2.4)

�

A.3 Hardware setup

The signal acquisition task for measuring pendulum and arm position of the Furuta pen-

dulum described on Chapter 5 was made over the National Instruments CB-68LPR, whose

connections diagram is shown on Figure A.1.

Figure A.1: Connections diagram

A.3. HARDWARE SETUP 65

Then, before implementing the corresponding control program for the physical prototype

using LabView, (National Instruments) Measurement & Automation Explorer has to be

properly setup, as shown on Figure A.2.

Figure A.2: NI Measurement & Automation Explorer

The subsystem corresponding to the dynamic state-feedback controller implemented in

LabView is shown on Figure A.3, while the Front Panel of the final program that uses this

subsystem is shown on Figure A.4.

Figure A.3: Dynamic state-feedback controller in LabView

A.3. HARDWARE SETUP 66

Figure A.4: Front panel for Furuta pendulum using dynamic state-feedback

A.4. ADAPTIVE LQR CODE USED ON FURUTA PENDULUM SIMULATION 67

A.4 Adaptive LQR code used on Furuta pendulum simulation

c l c ; c l e a r a l l ;

dt = 0 . 0 0 2 ;

t ime hor i zon = 12/ dt ;

l e n t a r g e t s = 6 ;

A = [0 1 0 0 0 ; 0 −0.31 2 .99 −0.02 8 1 . 4 7 ; 0 0 0 1 0 ; 0 −0.02 61 .49 −0.5 6 3 . 8 8 ; 0 −261.94 0 0 −800];

B = [0 ; 0 ; 0 ; 0 ; 1 0 0] ;

C = [1 0 0 0 0 ;0 0 1 0 0 ;0 0 0 0 1] ;

sys = s s (A, B, C, 0) ;

sysd = c2d (sys , 0 . 002 , ’ zoh ’) ;

A = sysd . a ;

B = sysd . b ;

C = sysd . c ;

L = [− .31 −5.26 70 .74 8 .92 0 . 1 7] ; % para Q s o l o c o n t r o l pendulo

%L = [−3.1 −6.07 80 .02 10 .08 0 . 1 8] ; % para Q c o n t r o l b r a z o

Q = [1 0 0 0 0 ; 0 10 0 0 0 ; 0 0 100 0 0 ; 0 0 0 10 0 ; 0 0 0 0 1] ;

R = 10 ;

r e f b r a z o = ze ro s (1 , t ime hor i zon) ;

u = ze ro s (2 , t ime hor i zon) ;

x = ze ro s (s i z e (A, 1) , t ime hor i zon) ;

x (: , 1) = [0 ; 0 ; 15 ; 0 ; 0] ;

x ml = ze ro s (s i z e (A, 1) , t ime hor i zon) ;

x ml (: , 1) = [0 ; 0 ; 15 ; 0 ; 0] ;

P = ze ro s (s i z e (A, 1) , s i z e (A, 1)) ;

L2 = −inv (R + B’∗P∗B)∗B’∗P∗A;

d t a r g e t (1 : l e n t a r g e t s , 1 : s i z e (A, 1)) = 0 ;

f o r i = 1 : 1 : t ime hor izon−1

% i f 1/ dt < i && i < 4/dt ,

% r e f b r a z o (1 , i) = 90 ;

% e l s e

% r e f b r a z o (1 , i) = 0 ;

% end

x (: , i +1) = A∗ [x (1 , i)− r e f b r a z o (1 , i) ; x (2 : 5 , i)] − B∗L∗ [x (1 , i)− r e f b r a z o (1 , i) ; x (2 : 5 , i)] ;

u (1 , i) = −L∗ [x (1 , i)− r e f b r a z o (1 , i) ; x (2 : 5 , i)] ;

u (2 , i) = L2 ∗ [x ml (1 , i)− r e f b r a z o (1 , i) ; x ml (2 : 5 , i)] ;

A.4. ADAPTIVE LQR CODE USED ON FURUTA PENDULUM SIMULATION 68

x ml (: , i +1) = A∗ [x ml (1 , i)− r e f b r a z o (1 , i) ; x ml (2 : 5 , i)] + B∗u (2 , i) ;

d t a r g e t (1 : l e n t a r g e t s −1, :) = d t a r g e t (2 : l e n t a r g e t s , :) ;

%d t a r g e t (5 , :) = 2∗x ml (: , i) ’∗Q + 2∗u ’∗R∗L2 + 2∗x ml (: , i +1) ’∗P∗(A + B∗L2) ;

d t a r g e t (l e n t a r g e t s , :) = [x ml (1 , i)− r e f b r a z o (1 , i) ; x ml (2 : 5 , i)] ’ ∗Q + u (2 , i) ’∗R∗L2 + [x ml (1 , i +1)− r e f b r a z o (1 , i +1); x ml (2 : 5 , i +1)] ’∗P∗(A − B∗L2) ;

i f mod(i , l e n t a r g e t s) == 0

C = 2∗ [x ml (1 , i−l e n t a r g e t s +1: i)− r e f b r a z o (1 , i−l e n t a r g e t s +1: i) ; x ml (2 : 5 , i−l e n t a r g e t s +1: i)] ∗ [x ml (1 , i−l e n t a r g e t s +1: i)− r e f b r a z o (1 , i−l e n t a r g e t s +1: i) ; x ml (2 : 5 , i−l e n t a r g e t s +1: i)] ’ ;

q = [x ml (1 , i−l e n t a r g e t s +1: i)− r e f b r a z o (1 , i−l e n t a r g e t s +1: i) ; x ml (2 : 5 , i−l e n t a r g e t s +1: i)] ∗ d t a r g e t ;

P = inv (C)∗q ;

L2 = −inv (R + B’∗P∗B)∗B’∗P∗A;

end

end

t = 1 : 1 : t ime hor i zon ;

p l o t (dt .∗ t , x (3 , :) , ’ k ’) ;

hold on ; g r id on ; t i t l e (’ pendulum ’)

p l o t (dt .∗ t , x ml (3 , :) , ’ k−−’)

f i g u r e

p l o t (dt .∗ t , x (1 , :) , ’ k ’) ;

hold on ; g r id on ; t i t l e (’ arm ’)

p l o t (dt .∗ t , mod(x ml (1 , :) , 3 6 0) , ’ k−−’)

% f i g u r e

% p lo t (dt .∗ t , u (1 , :) , ’ k ’) ;

% hold on ; g r id on ; t i t l e (’ c o n t r o l s i gna l ’)

% p lo t (dt .∗ t , u (2 , :) , ’ k−−’)

REFERENCES

[1] Gabriel A Ahumada, Cristobal J Nettle, and Miguel A Solis. Accelerating q-learning

through kalman filter estimations applied in a robocup ssl simulation. In Robotics Symposium

and Competition (LARS/LARC), 2013 Latin American, pages 112–117. IEEE, 2013.

[2] Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods.

Courier Dover Publications, 2007.

[3] Karl J Astrom and Bjorn Wittenmark. Computer controlled systems: Theory and design,

1994.

[4] Karl Johan Åström and Katsuhisa Furuta. Swinging up a pendulum by energy control.

Automatica, 36(2):287–295, 2000.

[5] KJ Åström. Introduction to stochastic control theory. 1970.

[6] Ahmad Taher Azar and Fernando E Serrano. Adaptive sliding mode control of the furuta

pendulum. In Advances and Applications in Sliding Mode Control systems, pages 1–42.

Springer, 2015.

[7] Enrique Barbieri and Rocio Alba-Flores. On the infinite-horizon lq tracker. Systems &

Control Letters, 40(2):77–82, 2000.

[8] Richard Bellman. E. 1957. dynamic programming. Princeton UniversityPress. Bellman-

Dynamic programming1957, 1957.

[9] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas.

Dynamic programming and optimal control, volume 1. Athena Scientific Belmont, MA, 1995.

[10] Lionel Birglen, Thierry Laliberté, and Clément M Gosselin. Underactuated robotic hands,

volume 40. Springer, 2007.

[11] Steven J Bradtke, B Erik Ydstie, and Andrew G Barto. Adaptive linear quadratic control

using policy iteration. In American Control Conference, 1994, volume 3, pages 3475–3479.

IEEE, 1994.

[12] Shuping Chen, Xunjing Li, and Xun Yu Zhou. Stochastic linear quadratic regulators with

indefinite control weight costs. SIAM Journal on Control and Optimization, 36(5):1685–

1702, 1998.

69

References 70

[13] Carlos E de Souza and Marcelo D Fragoso. On the existence of maximal solution for

generalized algebraic riccati equations arising in stochastic control. Systems & Control

Letters, 14(3):233–239, 1990.

[14] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE

computational intelligence magazine, 1(4):28–39, 2006.

[15] Graham Clifford Goodwin, Stefan F Graebe, and Mario E Salgado. Control system

design, volume 240. Prentice Hall New Jersey, 2001.

[16] Iraj Hassanzadeh and Saleh Mobayen. Controller design for rotary inverted pendulum

system using evolutionary algorithms. Mathematical Problems in Engineering, 2011, 2011.

[17] Pingan He and Sarangapani Jagannathan. Reinforcement learning-based output feed-

back control of nonlinear systems with input constraints. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 35(1):150–154, 2005.

[18] Yulin Huang, Weihai Zhang, and Huanshui Zhang. Infinite horizon linear quadratic

optimal control for discrete-time stochastic systems. Asian Journal of Control, 10(5):608–

615, 2008.

[19] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learn-

ing: A survey. arXiv preprint cs/9605103, 1996.

[20] Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction

theory. Journal of Fluids Engineering, 83(1):95–108, 1961.

[21] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Journal of Fluids Engineering, 82(1):35–45, 1960.

[22] Bahare Kiumarsi, Frank L Lewis, Hamidreza Modares, Ali Karimpour, and Mohammad-

Bagher Naghibi-Sistani. Reinforcement q-learning for optimal tracking control of linear

discrete-time systems with unknown dynamics. Automatica, 50(4):1167–1175, 2014.

[23] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A

survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[24] N Kumaresan and P Balasubramaniam. Optimal control for stochastic linear quadratic

singular system using neural networks. Journal of Process Control, 19(3):482–488, 2009.

[25] Frank L Lewis and Derong Liu. Reinforcement learning and approximate dynamic pro-

gramming for feedback control, volume 17. John Wiley & Sons, 2013.

[26] Frank L Lewis and Kyriakos G Vamvoudakis. Reinforcement learning for partially ob-

servable dynamic processes: Adaptive dynamic programming using measured output data.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 41(1):14–25,

2011.

[27] Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the 20th

International Conference on Machine Learning (ICML-03), pages 560–567, 2003.

References 71

[28] Reza Olfati-Saber. Nonlinear control of underactuated mechanical systems with applica-

tion to robotics and aerospace vehicles. PhD thesis, Citeseer, 2000.

[29] Manuel Olivares and Pedro Albertos. A switched swing-up and stabilization control strat-

egy for the rotating flywheel pendulum. In Intelligent Control and Automation (WCICA),

2014 11th World Congress on, pages 3874–3880. IEEE, 2014.

[30] Chunbin Qin, Huaguang Zhang, and Yanhong Luo. Online optimal tracking control of

continuous-time linear systems with unknown dynamics by using adaptive dynamic pro-

gramming. International Journal of Control, 87(5):1000–1009, 2014.

[31] M Ramı́rez-Neria, H Sira-Ramı́rez, R Garrido-Moctezuma, and Alberto Luviano-Juarez.

Linear active disturbance rejection control of underactuated systems: The case of the furuta

pendulum. ISA transactions, 53(4):920–928, 2014.

[32] Wilson J Rugh. Linear system theory, volume 2. prentice hall Upper Saddle River, NJ,

1996.

[33] Oscar A Silva and Miguel A Solis. Evolutionary function approximation for gait gener-

ation on legged robots. In Nature-Inspired Computing for Control Systems, pages 265–289.

Springer, 2016.

[34] Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback control: analysis and

design, volume 2. Wiley New York, 2007.

[35] Torsten Söderström. Discrete-time stochastic systems: estimation and control. Springer,

2002.

[36] Miguel A Solis, Manuel Olivares, and Hector Allende. Stabilizing dynamic state feedback

controller synthesis: A reinforcement learning approach. Studies in Informatics and Control,

25(2):245–254, 2016.

[37] Mark W Spong. Underactuated mechanical systems. In Control problems in robotics

and automation, pages 135–150. Springer, 1998.

[38] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT

Press, 1998.

[39] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, vol-

ume 1. Cambridge Univ Press, 1998.

[40] Richard S Sutton, Andrew G Barto, and Ronald J Williams. Reinforcement learning is

direct adaptive optimal control. Control Systems, IEEE, 12(2):19–22, 1992.

[41] Stephan Ten Hagen and Ben Kröse. Linear quadratic regulation using reinforcement

learning. In 8th Belgian-Dutch Conference on Machine learning, pages 39–46, 1998.

[42] Sebastian B Thrun. The role of exploration in learning control. Handbook of intelligent

control: Neural, fuzzy and adaptive approaches, 1992.

References 72

[43] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,

University of Cambridge, 1989.

[44] Paul J Werbos. Neural networks for control and system identification. In Decision and

Control, 1989., Proceedings of the 28th IEEE Conference on, pages 260–265. IEEE, 1989.

[45] Paul J Werbos. Approximate dynamic programming for real-time control and neural

modeling. Handbook of intelligent control: Neural, fuzzy, and adaptive approaches, 15:493–

525, 1992.

[46] Ronald J Williams and Leemon C Baird. Tight performance bounds on greedy policies

based on imperfect value functions. Technical report, Citeseer, 1993.

[47] William M Wonham. On a matrix riccati equation of stochastic control. SIAM Journal

on Control, 6(4):681–697, 1968.

[48] H Yu, Y Liu, and T Yang. Closed-loop tracking control of a pendulum-driven cart-

pole underactuated system. Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, 222(2):109–125, 2008.

[49] Weihai Zhang and Guiling Li. Discrete-time indefinite stochastic linear quadratic optimal

control with second moment constraints. Mathematical Problems in Engineering, 2014, 2014.

